Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Viola, Giuseppe

  • Google
  • 8
  • 32
  • 700

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2025Investigation of electric field-induced phase transitions in unfilled tungsten bronze relaxor ceramics designed by the high entropy concept1citations
  • 2019Orthoenstatite to forsterite phase transformation in magnesium germanate ceramics4citations
  • 2017The effect of processing conditions on phase and microstructure of CaGeO3 ceramics2citations
  • 2013Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics135citations
  • 2013A Lead-Free and High-Energy Density Ceramic for Energy Storage Applications188citations
  • 2012The effect of carbon nanotubes on the sintering behaviour of zirconia41citations
  • 2012Structural and magnetic characterization of spark plasma sintered Fe-50Co alloys8citations
  • 2011THE CONTRIBUTION OF ELECTRICAL CONDUCTIVITY, DIELECTRIC PERMITTIVITY AND DOMAIN SWITCHING IN FERROELECTRIC HYSTERESIS LOOPS321citations

Places of action

Chart of shared publication
Wang, Ge
1 / 3 shared
Reece, Michael J.
2 / 18 shared
Eriksson, Mirva
1 / 3 shared
Wang, Bowen
1 / 2 shared
Wu, Zixuan
1 / 1 shared
Koval, Vladimir V.
1 / 1 shared
Yan, Haixue
2 / 4 shared
Hall, David
1 / 17 shared
Cempura, Grzegorz
2 / 9 shared
Smeacetto, Federico
2 / 50 shared
Disanto, Fabiana
2 / 7 shared
Salvo, Milena
2 / 58 shared
Koval, Vladimir
1 / 1 shared
Mahmoud, Abd El Razek
1 / 1 shared
Reece, Michael John
1 / 4 shared
Rokosz, M. K.
1 / 1 shared
Gregg, J. M.
1 / 20 shared
Weaver, Paul M.
1 / 28 shared
Cain, M. G.
1 / 27 shared
Viola, G.
1 / 6 shared
Gregg, Marty
1 / 43 shared
Weaver, Pm
1 / 560 shared
Rokosz, Mariej K.
1 / 1 shared
Correia, T. M.
1 / 11 shared
Correia, Tatiana M.
1 / 1 shared
Mcmillen, M.
1 / 9 shared
Cain, Markys G.
1 / 3 shared
Mcmillen, Mark
1 / 2 shared
Inam, Fawad
1 / 44 shared
Milsom, Ben
1 / 3 shared
Peijs, Ton
1 / 237 shared
Gao, Zhipeng
1 / 1 shared
Chart of publication period
2025
2019
2017
2013
2012
2011

Co-Authors (by relevance)

  • Wang, Ge
  • Reece, Michael J.
  • Eriksson, Mirva
  • Wang, Bowen
  • Wu, Zixuan
  • Koval, Vladimir V.
  • Yan, Haixue
  • Hall, David
  • Cempura, Grzegorz
  • Smeacetto, Federico
  • Disanto, Fabiana
  • Salvo, Milena
  • Koval, Vladimir
  • Mahmoud, Abd El Razek
  • Reece, Michael John
  • Rokosz, M. K.
  • Gregg, J. M.
  • Weaver, Paul M.
  • Cain, M. G.
  • Viola, G.
  • Gregg, Marty
  • Weaver, Pm
  • Rokosz, Mariej K.
  • Correia, T. M.
  • Correia, Tatiana M.
  • Mcmillen, M.
  • Cain, Markys G.
  • Mcmillen, Mark
  • Inam, Fawad
  • Milsom, Ben
  • Peijs, Ton
  • Gao, Zhipeng
OrganizationsLocationPeople

article

Structural and magnetic characterization of spark plasma sintered Fe-50Co alloys

  • Viola, Giuseppe
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>Fe-50 wt% Co alloy powders with average particle size of 10 μm were compacted by spark plasma sintering (SPS) at 700, 800, 900 and 950<jats:sup>o</jats:sup>C by applying 40, 80, 100 MPa uniaxial pressures for 2, 5, 10 minutes. The densities of the samples were found to increase with temperature from 700 to 900<jats:sup>o</jats:sup>C for constant sintering pressure and time and to decrease for the material sintered at 950<jats:sup>o</jats:sup>C. The effects of sintering time on density were more significant in samples sintered at 700<jats:sup>o</jats:sup>C and 800<jats:sup>o</jats:sup>C than those densified at 900<jats:sup>o</jats:sup>C. The consequences of small increases in mechanical pressure during sintering on density values were significant for samples sintered at 700<jats:sup>o</jats:sup>C. The coercivity (H<jats:sub>c</jats:sub>) of the compacts decreased significantly with increasing sintering temperature, and with increasing dwell time at sintering temperatures lower than 700<jats:sup>o</jats:sup>C. The sample sintered at 950<jats:sup>o</jats:sup>C, which contains the largest grains among the prepared samples and porous microstructure, exhibited the minimum coercivity. Unlike H<jats:sub>c</jats:sub>, the remanence (B<jats:sub>r</jats:sub>) and saturation induction (B<jats:sub>sat</jats:sub>) values were more strongly affected by the specimen density than by grain size. B<jats:sub>r</jats:sub> and B<jats:sub>sat</jats:sub> values were found to vary linearly with sintering temperature and pressure owing to increasing density. An increase in soaking time at 800 and 900 <jats:sup>o</jats:sup>C, although enabling higher density, exhibited contradicting effects on B<jats:sub>sat</jats:sub> values. The SPS parameters to obtain maximum density and optimum magnetic properties for Fe-50% Co alloy were found to be 900<jats:sup>o</jats:sup>C, 80 MPa and 2-5 minutes.</jats:p>

Topics
  • porous
  • density
  • grain
  • grain size
  • sintering
  • coercivity