Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hutchings, David

  • Google
  • 5
  • 10
  • 39

University of Glasgow

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2018Sputter-deposited magneto-optical garnet thin films for all-mode Faraday rotators10citations
  • 2014Characterization and optimization of ion implantation for high spatial resolution quantum well intermixing in GaAs/AlGaAs superlattices2citations
  • 2013Quasi-phase-matched Faraday rotation in semiconductor waveguides with a magnetooptic cladding for monolithically integrated optical isolators26citations
  • 2011Quasi-phase matching magneto-optical waveguides1citations
  • 2007Enabling technologies for the monolithic integration of semiconductor lasers and waveguide optical isolatorscitations

Places of action

Chart of shared publication
Stadler, Bethanie J. H.
2 / 11 shared
Holmes, Barry
1 / 1 shared
Younis, Usman
1 / 1 shared
Block, Andrew D.
1 / 1 shared
Sung, Sang-Yeob
1 / 1 shared
Seaton, Nicholas C. A.
1 / 2 shared
Holmes, B. M.
3 / 3 shared
Zhang, Cui
1 / 2 shared
Dulal, Prabesh
1 / 3 shared
Bregenzer, J. J.
1 / 1 shared
Chart of publication period
2018
2014
2013
2011
2007

Co-Authors (by relevance)

  • Stadler, Bethanie J. H.
  • Holmes, Barry
  • Younis, Usman
  • Block, Andrew D.
  • Sung, Sang-Yeob
  • Seaton, Nicholas C. A.
  • Holmes, B. M.
  • Zhang, Cui
  • Dulal, Prabesh
  • Bregenzer, J. J.
OrganizationsLocationPeople

article

Quasi-phase matching magneto-optical waveguides

  • Hutchings, David
  • Holmes, B. M.
Abstract

<p>Photonic integration has proved remarkably successful in combining multiple optical devices onto a single chip with the benefits of added functionality, and reduction in costs, arising from the replacement of manual assembly and alignment of individual components with lithographic techniques. However, the incorporation of optical isolators and related non-reciprocal devices within standard optoelectronic wafer platforms is exceptionally challenging. Preferred magneto-optic materials cannot be exploited as waveguide core layers on semiconductor wafers due to a lower refractive index. Another difficulty is the phase velocity mismatch as a consequence of the inherent structural birefringence associated with waveguide geometries.</p><p>Our approach to the integration of an optical isolator with a III-V semiconductor laser involves combining a nonreciprocal mode converter with a reciprocal mode converter, based on an asymmetric profiled rib waveguide, fabricated by Reactive Ion Etching. We demonstrate that suitably tapered waveguides can be employed to connect the mode converter to other sections thereby avoiding problems caused by mode-matching and reflections from the section interfaces.</p><p>The nonreciprocal mode converter is formed from a continuation of the III-V semiconductor waveguide core with a magneto-optic upper cladding so that Faraday rotation occurs through the interaction of the evanescent tail. The phase velocity mismatch due to the waveguide birefringence is overcome using a quasi-phase-matching approach. Lithography is used to pattern the top cladding so that the film immediately on top of the waveguide core alternates between magnetooptic and a non-magneto-optic dielectric of a similar refractive index. Our first demonstrations used a dielectric (silica or silicon nitride) patterned by etching, or lift-off, on top of a GaAs rib waveguide, over which was deposited a magneto-optic film. This film was deposited by sputtering from a Ce:YIG target and demonstrated magnetic hysteresis, but, as it was not annealed, it was believed to consist of Ce:YIG and/or gamma iron oxide microcrystallites embedded in an amorphous matrix. With quasi-phase-matching periods of 110–160 μm and a waveguide length of 8 mm, we were able to demonstrate up to 12% non-reciprocal TE- to TM-mode conversion around a wavelength of 1.3 μm using the remanent magnetisation.</p><p>In order to enhance the magneto-optic effect it is desirable to anneal such films. However the mismatch in thermal expansion coefficients results in a catastrophic failure of samples with large area film coverage. This problem has been shown to be alleviated by patterning the YIG film. Unfortunately wet-etching of YIG also etches (Al)GaAs and, therefore, the development of a lift-off process for YIG deposition has been undertaken. Initial results are promising with ∼100 μm×2.5 μm YIG sections deposited on a GaAs layer which remain intact after an anneal in an oxygen atmosphere.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • amorphous
  • phase
  • Oxygen
  • nitride
  • thermal expansion
  • Silicon
  • iron
  • lithography
  • III-V semiconductor
  • plasma etching