People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kostiainen, Mauri A.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2025Mechanoenzymatic hydrolysis of cotton to cellulose nanocrystals
- 2023Potato virus A particles – A versatile material for self-assembled nanopatterned surfacescitations
- 2022Environment-Dependent Stability and Mechanical Properties of DNA Origami Six-Helix Bundles with Different Crossover Spacingscitations
- 2022Simultaneous Organic and Inorganic Host-Guest Chemistry within Pillararene-Protein Cage Frameworkscitations
- 2021Biotemplated Lithography of Inorganic Nanostructures (BLIN) for Versatile Patterning of Functional Materialscitations
- 2018Properties and chemical modifications of lignincitations
- 2017Nanometrology and super-resolution imaging with DNAcitations
- 2017Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocompositescitations
- 2017Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterialscitations
- 2016Metallic nanostructures based on DNA nanoshapescitations
- 2015Hierarchically Ordered Supramolecular Protein-Polymer Composites with Thermoresponsive Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Nanometrology and super-resolution imaging with DNA
Abstract
<p>Structural DNA nanotechnology is revolutionizing the ways researchers construct arbitrary shapes and patterns in two and three dimensions on the nanoscale. Through Watson-Crick base pairing, DNA can be programmed to form nanostructures with high predictability, addressability, and yield. The ease with which structures can be designed and created has generated great interest for using DNA for a variety of metrology applications, such as in scanning probe microscopy and super-resolution imaging. An additional advantage of the programmable nature of DNA is that mechanisms for nanoscale metrology of the structures can be integrated within the DNA objects by design. This programmable structure-property relationship provides a powerful tool for developing nanoscale materials and smart rulers.</p>