People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burtscher, Michael
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Micro-Mechanical Fracture Investigations on Grain Size Tailored Tungsten-Copper Nanocompositescitations
- 2024Mechanical processing and thermal stability of the equiatomic high entropy alloy TiVZrNbHf under vacuum and hydrogen pressurecitations
- 2023Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloycitations
- 2023Deformation and failure behavior of nanocrystalline WCucitations
- 2023Precipitation behavior of hexagonal carbides in a C containing intermetallic γ-TiAl based alloycitations
- 2023From unlikely pairings to functional nanocomposites: FeTi–Cu as a model systemcitations
- 2023On the stability of Ti(Mn,Al)2 C14 Laves phase in an intermetallic Ti–42Al–5Mn alloycitations
- 2023On the stability of Ti(Mn,Al)$_2$ C14 Laves phase in an intermetallic Ti–42Al–5Mn alloycitations
- 2022In situ micromechanical analysis of a nano-crystalline W-Cu compositecitations
- 2022Oxidation resistance of cathodic arc evaporated Cr$_{0.74}$Ta$_{0.26}$N coatingscitations
- 2021High-Temperature Nanoindentation of an Advanced Nano-Crystalline W/Cu Compositecitations
- 2020In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloycitations
- 2020An Advanced TiAl Alloy for High-Performance Racing Applicationscitations
- 2019The creep behavior of a fully lamellar γ-TiAl based alloycitations
Places of action
Organizations | Location | People |
---|
article
In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloy
Abstract
<p>Intermetallic γ-TiAl-based alloys are commonly used as structural materials for components in high-temperature applications, although they generally suffer from a lack of ductility and crack resistance at ambient temperatures. Within this study, the process-adapted 4th generation TNM+ alloy, exhibiting a fully lamellar microstructure, was examined using notched micro-cantilevers with defined orientations of lamellar interfaces. These configurations were tested in situ using superimposed continuous stiffness measurement methods during loading with simultaneous scanning electron microscopy observations. Subsequently, the video signal was used for visual crack length determination by computer vision and compared to values calculated from in situ changes in stiffness data. Applying this combinatorial approach enabled to determine the J-integral as a measure of the fracture toughness for microstructurally different local crack propagation paths. Thus, distinct differences in conditional fracture toughness could be determined from 3.7 MPa m1/2 for γ/γ-interface to 4.4 MPa m1/2 for α2/γ-interface. </p>