Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fuentes Iriarte, Gonzalo

  • Google
  • 5
  • 5
  • 27

Universidad Politécnica de Madrid

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2015Post-CMOS compatible high-throughput fabrication of AIN-based piezoelectric microcantilevers11citations
  • 2015Electro-optical characterization of IC compatible microcantilevers2citations
  • 2011Effect of substrate-target distance and sputtering pressure in the synthesis of AlN thin films13citations
  • 2010Structural characterization of highly textured AlN thin films grown on titanium1citations
  • 2003AlN Thin Film Electroacoustic Devicescitations

Places of action

Chart of shared publication
Calle Gómez, Fernando
3 / 6 shared
Pérez Campos, Ana
2 / 2 shared
Hernando García, Jorge
1 / 2 shared
Lebedev, V.
1 / 5 shared
Rodriguez Madrid, Juan
1 / 1 shared
Chart of publication period
2015
2011
2010
2003

Co-Authors (by relevance)

  • Calle Gómez, Fernando
  • Pérez Campos, Ana
  • Hernando García, Jorge
  • Lebedev, V.
  • Rodriguez Madrid, Juan
OrganizationsLocationPeople

article

Structural characterization of highly textured AlN thin films grown on titanium

  • Fuentes Iriarte, Gonzalo
Abstract

<jats:p>A pulsed direct current (dc) reactive ion beam sputtering system has been used to synthesize highly <jats:italic>c</jats:italic>-axis oriented aluminum nitride (AlN) thin films on (0002)-oriented 200-nm thin titanium layers deposited on a Si-(111) substrate. After a systematic study of the processing variables, high-quality polycrystalline films with preferred <jats:italic>c</jats:italic>-axis orientation have been grown successfully on the Ti (0002) layer using an Al target under a N2/(N2 + Ar) ratio of 70%, a 2 mTorr processing pressure, and keeping the temperature of the substrate holder at ambient temperature (no substrate heating). The crystalline quality of the AlN and the underlaying Ti thin films was characterized by high-resolution x-ray diffraction. Best ω- full width at half maximum values of the (0002) reflection for 1-μm thin AlN layers are 0.56°. Hence, the AlN layers show a high degree of orientation in the (0002) direction, which directly translates into a high Q value piezoelectric response. Atomic force microscopy measurements were used to study the surface morphology of the Ti layer in an attempt to understand its impact on the quality of the AlN films deposited on top of them. Transmission electron microscopy cross-section analysis has been carried out to investigate the AlN/Ti interface. Our observations reveal the presence of crack-free layers with a smooth surface and extremely low defect density. Even local epitaxy phenomena have been identified at the AlN/Ti interface. The processing conditions used to synthesize AlN layers on Ti at room temperature are efficient in reducing the dislocation density and in-plane residual strain. Such AlN/Ti bilayers can be applied to manufacture novel electroacoustic device structures (such as bulk acoustic wave filters) on silicon substrates in further investigations.</jats:p>

Topics
  • density
  • surface
  • x-ray diffraction
  • thin film
  • atomic force microscopy
  • aluminium
  • reactive
  • crack
  • nitride
  • transmission electron microscopy
  • dislocation
  • Silicon
  • titanium