Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Takagi, Hiroshi

  • Google
  • 2
  • 5
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2009Fabrication of well-dispersed barium titanate nanoparticles by the electrospray of a colloidal solution5citations
  • 2008Fabrication of Monodispersed Barium Titanate Nanoparticles with Narrow Size Distribution15citations

Places of action

Chart of shared publication
Tanaka, Nobuhiko
1 / 1 shared
Suzuki, Keigo
2 / 7 shared
Kageyama, Keisuke
2 / 2 shared
Takeuchi, Kazuo
1 / 2 shared
Sakabe, Yukio
1 / 2 shared
Chart of publication period
2009
2008

Co-Authors (by relevance)

  • Tanaka, Nobuhiko
  • Suzuki, Keigo
  • Kageyama, Keisuke
  • Takeuchi, Kazuo
  • Sakabe, Yukio
OrganizationsLocationPeople

article

Fabrication of well-dispersed barium titanate nanoparticles by the electrospray of a colloidal solution

  • Tanaka, Nobuhiko
  • Suzuki, Keigo
  • Kageyama, Keisuke
  • Takagi, Hiroshi
Abstract

<jats:p>The electrospray of a colloidal microemulsion (ME) solution and subsequent on-line annealing were used to produce barium titanate nanoparticles (BTO-NPs). The solvent of the ME solution (cyclohexane) was replaced with a high-conductivity solution (solute: ammonium acetate, solvent: tetrahydrofurfuryl alcohol, conductivity: 3.1 × 10<jats:sup>−2</jats:sup> S/m) to generate ultrafine droplets during the electrospraying. Well-dispersed and well-crystallized BTO-NPs with a perovskite structure were successfully fabricated at an annealing temperature of 1173 K. The size distribution of the BTO-NPs was successfully measured by applying a differential mobility analyzer and condensation nucleation counter to nanoparticles in-flight. The average size of the BTO-NPs was controlled within a range of 15 to 25 nm by changing the feeding rate. The electrospray of an ME solution with lower conductivity (solvent: 1-octanol, conductivity: 7.0 × 10<jats:sup>−4</jats:sup> S/m) yielded amorphous particles with larger particle sizes. Thus, the electrospray of a high-conductivity solution is required to fabricate well-crystallized and dense BTO-NPs with smaller particle sizes.</jats:p>

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • amorphous
  • mobility
  • annealing
  • alcohol
  • Barium