Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pasha, M.

  • Google
  • 4
  • 18
  • 114

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Cohesive Powder Flow: Trends and Challenges in Characterisation and Analysiscitations
  • 2015Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater87citations
  • 2009Optimization of synthesis of the solid solution, Pb(Zr<sub>1–<i>x</i></sub>Ti<i><sub>x</sub></i>)O<sub>3</sub> on a single substrate using a high-throughput modified molecular-beam epitaxy technique5citations
  • 2007Synthesis of the ferroelectric solid solution, Pb(Zr1−xTix)O3 on a single substrate using a modified molecular beam epitaxy technique22citations

Places of action

Chart of shared publication
Hare, C.
2 / 8 shared
Nadimi, S.
1 / 1 shared
Nan, W.
1 / 1 shared
Zafar, U.
1 / 5 shared
Nezamabadi, S.
1 / 1 shared
Ghadiri, M.
2 / 13 shared
Lopez, A.
1 / 12 shared
Vivacqua, V.
1 / 2 shared
Piccione, Pm
1 / 1 shared
Gunadi, A.
1 / 1 shared
Guerin, S.
2 / 6 shared
Whittle, K. R.
2 / 6 shared
Han, Y.
2 / 13 shared
Anderson, P. S.
2 / 2 shared
Hayden, B. E.
2 / 3 shared
Reaney, I. M.
2 / 44 shared
Bell, A. J.
1 / 6 shared
Khan, M. A.
1 / 9 shared
Chart of publication period
2020
2015
2009
2007

Co-Authors (by relevance)

  • Hare, C.
  • Nadimi, S.
  • Nan, W.
  • Zafar, U.
  • Nezamabadi, S.
  • Ghadiri, M.
  • Lopez, A.
  • Vivacqua, V.
  • Piccione, Pm
  • Gunadi, A.
  • Guerin, S.
  • Whittle, K. R.
  • Han, Y.
  • Anderson, P. S.
  • Hayden, B. E.
  • Reaney, I. M.
  • Bell, A. J.
  • Khan, M. A.
OrganizationsLocationPeople

article

Optimization of synthesis of the solid solution, Pb(Zr<sub>1–<i>x</i></sub>Ti<i><sub>x</sub></i>)O<sub>3</sub> on a single substrate using a high-throughput modified molecular-beam epitaxy technique

  • Guerin, S.
  • Whittle, K. R.
  • Pasha, M.
  • Han, Y.
  • Anderson, P. S.
  • Hayden, B. E.
  • Reaney, I. M.
Abstract

<jats:p>Synthesis of Pb(Zr<jats:sub>1–<jats:italic>x</jats:italic></jats:sub>Ti<jats:italic><jats:sub>x</jats:sub></jats:italic>)O<jats:sub>3</jats:sub> (PZT) on a single substrate using a high-throughput molecular-beam epitaxy technique was demonstrated. In situ synthesis of crystalline PZT at elevated substrate temperatures could not be achieved, as reevaporation of Pb (PbO) occurred and the partial pressure of O<jats:sub>2</jats:sub> was insufficient to prevent formation of a PbPt<jats:italic><jats:sub>x</jats:sub></jats:italic> phase during deposition. Instead, ex situ postdeposition annealing was performed on PZT deposited at room temperature. Dense single phase PZT was prepared with a compositional range of 0.1 &gt; <jats:italic>x</jats:italic> &gt; 0.9, for film thicknesses up to 800 nm. Transmission electron microscopy revealed the grain size increased from 50 nm to ∼0.5 μm with increasing Zr-concentration and became more columnar. Raman, x-ray diffraction, and scanning electron microscopy/energy dispersive spectroscopy results revealed a morphotropic phase boundary between rhombohedral and tetragonal phases occurred at <jats:italic>x</jats:italic> ∼0.4 rather than at <jats:italic>x</jats:italic> = 0.47 in bulk ceramics. This was attributed to clamping arising from mismatch in thermal expansion between the film and substrate.</jats:p>

Topics
  • Deposition
  • grain
  • grain size
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • transmission electron microscopy
  • thermal expansion
  • annealing
  • ceramic
  • phase boundary
  • spectroscopy