Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Makovec, D.

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Influence of microstructure and preparation methods on the magneto-crystalline structure and magnetic properties of submicron barium hexaferrite powders5citations

Places of action

Chart of shared publication
Gilewski, A.
1 / 2 shared
Ghelev, Ch.
1 / 1 shared
Lukanov, P.
1 / 1 shared
Lisjak, D.
1 / 1 shared
Nedkov, I.
1 / 3 shared
Vandenberghe, R. E.
1 / 1 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Gilewski, A.
  • Ghelev, Ch.
  • Lukanov, P.
  • Lisjak, D.
  • Nedkov, I.
  • Vandenberghe, R. E.
OrganizationsLocationPeople

article

Influence of microstructure and preparation methods on the magneto-crystalline structure and magnetic properties of submicron barium hexaferrite powders

  • Gilewski, A.
  • Ghelev, Ch.
  • Lukanov, P.
  • Lisjak, D.
  • Makovec, D.
  • Nedkov, I.
  • Vandenberghe, R. E.
Abstract

<jats:p>We report studies on the correlation between the microstructure, the magneto-crystalline structure, and the magnetic properties of barium hexaferrite powders. The samples consisted of typical hexagonal plate-like particles with approximate sizes of 80, 180, and 500 nm, obtained by microemulsion, coprecipitation, and solid-state reaction techniques, respectively, and were characterized by x-ray powder diffraction and scanning and transmission electron microscopy. The hyperfine parameters of the hexaferrite powders with different particle size were investigated by Mössbauer spectroscopy. We also measured the magnetization-versus-magnetic field dependence of the submicron powders at high magnetic fields up to 30 T at 4.2 K. Finally, we comment on the surface effects observed because of particle size reduction from micron to nanoscale dimensions.</jats:p>

Topics
  • microstructure
  • surface
  • transmission electron microscopy
  • magnetization
  • Mössbauer spectroscopy
  • Barium