Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Topol, Anna W.

  • Google
  • 2
  • 9
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2004Chemical Vapor Deposition of ZnS:Mn for Thin-Film Electroluminescent Display Applications17citations
  • 2001MOCVD ZnS:Mn Films: Crystal Structure and Defect Microstructure as a Function of the Growth Parameterscitations

Places of action

Chart of shared publication
Nuesca, Guillermo M.
1 / 1 shared
Barth, Karl W.
1 / 1 shared
Dovidenko, Katharine
2 / 2 shared
Taylor, Brian K.
1 / 1 shared
Tuenge, Richard T.
1 / 1 shared
Kaloyeros, Alain E.
2 / 6 shared
King, Chris N.
1 / 1 shared
Shekhawat, Gajendra S.
1 / 1 shared
Geer, Robert E.
1 / 2 shared
Chart of publication period
2004
2001

Co-Authors (by relevance)

  • Nuesca, Guillermo M.
  • Barth, Karl W.
  • Dovidenko, Katharine
  • Taylor, Brian K.
  • Tuenge, Richard T.
  • Kaloyeros, Alain E.
  • King, Chris N.
  • Shekhawat, Gajendra S.
  • Geer, Robert E.
OrganizationsLocationPeople

article

Chemical Vapor Deposition of ZnS:Mn for Thin-Film Electroluminescent Display Applications

  • Topol, Anna W.
  • Nuesca, Guillermo M.
  • Barth, Karl W.
  • Dovidenko, Katharine
  • Taylor, Brian K.
  • Tuenge, Richard T.
  • Kaloyeros, Alain E.
  • King, Chris N.
Abstract

<jats:p>Results are presented from a systematic investigation to design and optimize a low-pressure chemical vapor deposition (CVD) process for manganese-doped zinc sulfide (ZnS:Mn) thin films for electroluminescent (EL) device applications. The CVD process used diethylzinc (DEZ), di-π-cyclopentadienyl manganese (CPMn), and hydrogen sulfide (H<jats:sub>2</jats:sub>S) as co-reactants and hydrogen (H<jats:sub>2</jats:sub>) as carrier gas. A design of experiments approach was used to derive functionality curves for the dependence of ZnS:Mn film properties on substrate temperature and flow rates (partial pressures) of DEZ, CPMn, H<jats:sub>2</jats:sub>S, and H<jats:sub>2</jats:sub>. Film physical, chemical, structural, and optical properties were examined using Rutherford backscattering spectrometry, dynamic secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, nuclear-reaction analysis, x-ray diffraction, transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. EL measurements were carried out on ZnS:Mn-based dielectric–sulfur–dielectric stacks incorporated into alternating-current thin-film electroluminescent devices. An optimized process window was established for the formation of films with predominantly (0 0 2) orientation, grain size larger than 0.2 μm, and Mn dopant level approximately 0.5 at.%. A brightness of 407 cd/m<jats:sup>2</jats:sup> (119 fL) and efficiency of 1.6 lm/W were obtained, as measured at 40 V above threshold voltage and 60 Hz frequency.</jats:p>

Topics
  • grain
  • grain size
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • thin film
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • zinc
  • Hydrogen
  • transmission electron microscopy
  • Manganese
  • spectrometry
  • chemical vapor deposition
  • Rutherford backscattering spectrometry