People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Min
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Reaction mechanism and performance of innovative 2D germanane‐silicane alloys: SixGe1−xH electrodes in lithium‐ion batteriescitations
- 2024Role of the Microstructure in the Li-Storage Performance of Spinel-Structured High-Entropy (Mn,Fe,Co,Ni,Zn) Oxide Nanofiberscitations
- 2023Cr silicate as a prototype for engineering magnetic phases in air-stable two-dimensional transition-metal silicatescitations
- 2023Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H2O Vapor Sorptioncitations
- 2023Charge Storage Mechanism in Electrospun Spinel‐Structured High‐Entropy (Mn<sub>0.2</sub>Fe<sub>0.2</sub>Co<sub>0.2</sub>Ni<sub>0.2</sub>Zn<sub>0.2</sub>)<sub>3</sub>O<sub>4</sub> Oxide Nanofibers as Anode Material for Li‐Ion Batteriescitations
- 2023Porous and Water Stable 2D Hybrid Metal Halide with Broad Light Emission and Selective H<sub>2</sub>O Vapor Sorptioncitations
- 2022Two-dimensional layered chromium selenophosphate: advanced high-performance anode material for lithium-ion batteriescitations
- 2020High performance flexible hybrid supercapacitors based on nickel hydroxide deposited on copper oxide supported by copper foam for a sunlight-powered rechargeable energy storage systemcitations
- 2015Macrobend optical sensing for pose measurement in soft robot armscitations
- 2001Adhesion of polymer-inorganic interfaces by nanoindentationcitations
Places of action
Organizations | Location | People |
---|
article
Adhesion of polymer-inorganic interfaces by nanoindentation
Abstract
<p>Nanoindentation combined with atomic force microscopy was applied to measure the fracture toughness of polystyrene/glass interfaces. Film delamination occurs when the inelastic penetration depth approximately equals or exceeds the film thickness. The delamination size was accurately measured using atomic force microscopy. Using multilayer indentation and annular-plate analyses, the interfacial fracture toughness was then assessed. The values obtained from the two analyses are in good agreement with the fracture toughness of the interface being approximately 350 mJ/m<sup>2</sup>. By appropriate fracture surface characterization, it was shown that fracture occurs along the polystyrene/glass interface. Crack arrest marks were observed, and their possible cause discussed. On the basis of the morphology of the fracture surface, the fracture toughness was also evaluated using a process zone analysis. The result agrees well with those obtained from the other two analyses.</p>