People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mann, Colleen
Jacobs (United Kingdom)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Characterisation and durability of a vitrified wasteform for simulated Chrompik III waste
- 2020The dissolution of simulant vitrified intermediate level nuclear waste in young cement watercitations
- 2019Physical and optical properties of the International Simple Glasscitations
- 2018Dissolution of glass in cementitious solutionscitations
- 2018Dissolution of glass in cementitious solutions:An analogue study for vitrified waste disposalcitations
Places of action
Organizations | Location | People |
---|
article
Dissolution of glass in cementitious solutions
Abstract
<p>The dissolution of a soda-lime silicate glass in two cement leachate compositions, Young Cement Water (YCW) and Ca(OH)2, was investigated, as an analogue for dissolution of vitrified nuclear waste in a cementitious geological disposal facility. Dissolution was performed at repository temperatures (50°C) and under CO2-exclusion. Dissolution rates were observed to be a factor of 20 times higher in YCW than in Ca(OH)2, as result of the high potassium content of YCW solutions. The precipitation of the zeolite phase, K-phillipsite (K(Si,Al)8O16·6H2O), is thought to be responsible for elevated dissolution rates. Conversely, in Ca(OH)2 solutions, the precipitation of calcium- and silica-containing phases, such as tobermorite (Ca5Si6O16(OH)·4H2O), acted to reduce rates of dissolution by forming a barrier to diffusion. These results show that dissolution of vitrified nuclear waste materials in a cementitous repository may be significant during the early stages of cement leaching in groundwater.</p>