People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rasul, Shahid
Northumbria University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Shaping sustainable pathwayscitations
- 2024Enhancing lithium-ion battery anode performance via heterogeneous nucleation of silver within Ti3C2-MXene frameworkscitations
- 2024Innovative Tin and hard carbon architecture for enhanced stability in lithium-ion battery anodescitations
- 2024Sputtered Hard Carbon for High-Performance Energy Storage Batteries
- 2024Designing Molybdenum Trioxide and Hard Carbon Architecture for Stable Lithium‐Ion Battery Anodescitations
- 2023Multi-layered Sn and Hard Carbon Architectures for Long-Term Stability and High-Capacity Lithium-Ion Battery Anodes
- 2023Fabrication of WO3 / Fe 2 O 3 heterostructure photoanode by PVD for photoelectrochemical applicationscitations
- 2023Advancing Lithium-Ion Battery Anodes: Novel Sn and Hard Carbon Architectures for Long-Term Stability and High Capacity
- 2023Molybdenum Incorporated O3‐type Sodium Layered Oxide Cathodes for High‐Performance Sodium‐Ion Batteriescitations
- 2022Coal fly ash supported CoFe2O4 nanocompositescitations
- 2021Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatingscitations
- 2021In Situ Printing and Functionalization of Hybrid Polymer-Ceramic Composites Using a Commercial 3D Printer and Dielectrophoresis—A Novel Conceptual Designcitations
- 2021In situ printing and functionalization of hybrid polymer-ceramic composites using a commercial 3d printer and dielectrophoresis—a novel conceptual designcitations
- 2016Characterization of a porous carbon material functionalized with cobalt-oxide/cobalt core-shell nanoparticles for lithium ion battery electrodes
- 2016A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO 2 loaded polymer nanofiber membranescitations
- 2014Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel productioncitations
- 2012High capacity positive electrodes for secondary Mg-ion batteriescitations
- 2012Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteriescitations
Places of action
Organizations | Location | People |
---|
article
Characterization of a porous carbon material functionalized with cobalt-oxide/cobalt core-shell nanoparticles for lithium ion battery electrodes
Abstract
<p>A nanoporous carbon (C) material, functionalized with Cobalt-Oxide/Cobalt (CoO/Co) core-shell nanoparticles (NPs), was structurally and chemically characterized with transmission electron microcopy (TEM) while its electrochemical response for Lithium ion battery (LIB) applications was evaluated as well. The results herein show that the nanoporous C material was uniformly functionalized with the CoO/Co core-shell NPs. Further the NPs were crystalline with fcc-Type lattice on the Co2+ oxide shell and hcp-Type core of metallic Co0. The electrochemical study was carried out by using galvanostatic charge/discharge cycling at a current density of 1000 mA g-1. The potential of this hybrid material for LIB applications was confirmed and it is attributed to the successful dispersion of the Co2+/ Co0 NPs in the C support.</p>