Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bode, Tobias

  • Google
  • 2
  • 2
  • 2

Leibniz University Hannover

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024An energy-based material model for the simulation of shape memory alloys under complex boundary value problems2citations
  • 2017Simulation of the Particle Distribution and Resulting Laser Processing of Selective Laser Melting Processescitations

Places of action

Chart of shared publication
Junker, Philipp
1 / 21 shared
Erdogan, Cem
1 / 1 shared
Chart of publication period
2024
2017

Co-Authors (by relevance)

  • Junker, Philipp
  • Erdogan, Cem
OrganizationsLocationPeople

document

Simulation of the Particle Distribution and Resulting Laser Processing of Selective Laser Melting Processes

  • Bode, Tobias
Abstract

Selective Laser Melting (SLM) is a 3D printing technology which is suited for additively manufacturing of metals and polymers. The main barriers of this process are the lack of reproducibility and the control of the influence of the process parameters, like laser power, scan rate, layer height and particle distribution for instance. A high fidelity simulation scheme for SLM processes can not only give an insight into the physical behaviour during the process, but can also help to control the whole 3D printing process in order to guarantee the reproducibility of the desired final product properties. However many challenges have to be overcome in order to guarantee a high fidelity simulation, like modelling the heat source or the phase change for instance. In this work the modelling of the heat source is addressed. A Ray Tracing algorithm should be implemented into the existing thermomechanical Optimal Transportation Meshfree (OTM) code. A Ray Tracing algorithm for the simulation of laser processes is investigated in combination with the Discrete Element Method in the literature. Therefore in a first step this algorithm should be recoded in order to benchmark the implemented Ray Tracing algorithm. In the next step this algorithm has to be implemented into the OTM code. An investigation by means of some examples should demonstrate the influence of the Ray Tracing algorithm on the fusion of two metal particles.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • simulation
  • selective laser melting
  • particle distribution
  • discrete element method