People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rolfes, Raimund
Leibniz University Hannover
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Evaluating the mechanical behavior of carbon composites with varied ply-thicknesses using acoustic emission measurements
- 2024A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocompositescitations
- 2024Phase-field modeling of fracture in viscoelastic–viscoplastic thermoset nanocomposites under cyclic and monolithic loading
- 2023Analysis of fatigue crack and delamination growth in GFRP composites in tension and compression loading
- 2023Refined Semi-Analytical Framework to Predict the Natural Vibration Characteristics of Bistable Laminatescitations
- 2023A new base of wind turbine noise measurement data and its application for a systematic validation of sound propagation modelscitations
- 2022Effect of moisture on the nonlinear viscoelastic fracture behavior of polymer nanocompsites: a finite deformation phase-field model
- 2022Efficient generation of geodesic random fields in finite elements with application to shell bucklingcitations
- 2021Robust improvement of the asymmetric post-buckling behavior of a composite panel by perturbing fiber paths
- 2020An efficient semi-analytical framework to tailor snap-through loads in bistable variable stiffness laminatescitations
- 2019Evaluation and modeling of the fatigue damage behavior of polymer composites at reversed cyclic loadingcitations
- 2019Progressive Failure Analysis Using Global-Local Coupling Including Intralaminar Failure and Debondingcitations
- 2018Effect of spatially varying material properties on the post-buckling behaviour of composite panels utilising geodesic stochastic fields
- 2018Effect of spatially varying material properties on the post-buckling behaviour of composite panels utilising geodesic stochastic fields
- 2018Experimental characterization and constitutive modeling of the non-linear stress–strain behavior of unidirectional carbon–epoxy under high strain rate loadingcitations
- 2018Analysis of skin-stringer debonding in composite panels through a two-way global-local methodcitations
- 2018A structural design concept for a multi-shell blended wing body with laminar flow control
- 2015An elastic molecular model for rubber inelasticitycitations
- 2014Material Modelling of Short Fiber Reinforced Thermoplastic for the FEA of a Clinching Test
- 2014Investigating the VHCF of composite materials using new testing methods and a new fatigue damage model
Places of action
Organizations | Location | People |
---|
article
Evaluation and modeling of the fatigue damage behavior of polymer composites at reversed cyclic loading
Abstract
Understanding the composite damage formation process and its impact on mechanical properties is a key step towards further improvement of material and higher use. For its accelerated application, furthermore, practice-related modeling strategies are to be established. In this collaborative study, the damage behavior of carbon fiber-reinforced composites under cyclic loading with load reversals is analyzed experimentally and numerically. The differences of crack density evolution during constant amplitude and tension-compression block-loading is characterized with the help of fatigue tests on cross-ply laminates. For clarifying the evolving stress-strain behavior of the matrix during static and fatigue long-term loading, creep, and fatigue experiments with subsequent fracture tests on neat resin samples are applied. The local stress redistribution in the composite material is later evaluated numerically using composite representative volume element (RVE) and matrix models under consideration of viscoelasticity. The experimental and numerical work reveals the strong influence of residual stresses and the range of cyclic tension stresses to the damage behavior. On the microscopic level, stress redistribution dependent on the mean stress takes place and a tendency of the matrix towards embrittlement was found. Therefore, it is mandatory to consider stress amplitude and means stress as inseparable load characteristic for fatigue assessment, which additionally is influenced by production-related and time-dependent residual stresses. The phenomenological findings are incorporated to a numerical simulation framework on the layer level to provide an improved engineering tool for designing composite structures. © 2019 by the authors.