People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feiler, Christian
Helmholtz-Zentrum Hereon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni‐Coated Martensitic Steels by Advanced Computational Modelingcitations
- 2023Searching the chemical space for effective magnesium dissolution modulators: a deep learning approach using sparse features
- 2023Predicting corrosion inhibition efficiencies of small organic molecules using data-driven techniques
- 2021Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
- 2021Exploring the Structure-Property Relationship of Magnesium Dissolution Modulatorscitations
- 2020A first-principles analysis of the charge transfer in magnesium corrosioncitations
- 2019Data science based mg corrosion engineeringcitations
- 2019Data science based mg corrosion engineering
Places of action
Organizations | Location | People |
---|
article
Predicting corrosion inhibition efficiencies of small organic molecules using data-driven techniques
Abstract
Selecting effective corrosion inhibitors from the vast chemical space is not a trivial task, as it is essentially infinite. Fortunately, machine learning techniques have shown great potential in generating shortlists of inhibitor candidates prior to large-scale experimental testing. In this work, we used the corrosion responses of 58 small organic molecules on the magnesium alloy AZ91 and utilized molecular descriptors derived from their geometry and density functional theory calculations to encode their molecular information. Statistical methods were applied to select the most relevant features to the target property for support vector regression and kernel ridge regression models, respectively, to predict the behavior of untested compounds. The performance of the two supervised learning approaches were compared and the robustness of the data-driven models were assessed by experimental blind testing.