People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmad, Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Strategic Fabrication of Au4Cu2 NC/ZIF-8 Composite Via In Situ Integration Technique for Enhanced Energy Storage Applicationscitations
- 2024In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuOcitations
- 2024Synthesis and characterization of novel SEBS-g-MA/OMMT nanocomposites with thermal and mechanical resiliencecitations
- 2023Corrigendum to “Three-dimensional flower-like nanocomposites based on ZnO/NiO as effective electrode materials for supercapacitors” [J. Electroanal. Chem. 930 (2023) 117158]citations
- 2023Experimental and theoretical insights of binder-free magnesium nickel cobalt selenide star-like nanostructure as electrodecitations
- 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage applicationcitations
- 2023In Situ Grown Heterostructure Based on MOF-Derived Carbon Containing n-Type Zn-In-S and Dry-Oxidative p-Type CuO as Pseudocapacitive Electrode Materialscitations
- 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Studycitations
- 2023Three-dimensional flower-like nanocomposites based on ZnO/NiO as effective electrode materials for supercapacitorscitations
- 2022Fabrication of Bimetallic Cu-Ag Nanoparticle-Decorated Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) and Its Enhanced Catalytic Activity for the Reduction of 4-Nitrophenolcitations
- 2022Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te)citations
- 2022Modified KBBF-like Material for Energy Storage Applicationscitations
- 2022Novel and Facile Synthesis of Biodegradable Plastic Films from Cornmeal by Using the Microwave Polymerization Techniquecitations
- 2022Factors affecting the growth formation of nanostructures and their impact on electrode materialscitations
- 2022Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materialscitations
- 2022On-site application of solar-activated membrane (Cr–Mn-doped TiO2@graphene oxide) for the rapid degradation of toxic textile effluentscitations
- 2021An oriented Ni–Co-MOF anchored on solution-free 1D CuOcitations
- 2021Binder-free trimetallic phosphate nanosheets as an electrodecitations
- 2021Structural and Band Structure Investigation of Iron Oxide Nanoparticles Incorporated PVA Nanocomposite Filmscitations
- 2020Field electron emission measurements as a complementary technique to assess carbon nanotube qualitycitations
- 2018Physicochemical characterisation of reduced graphene oxide for conductive thin filmscitations
- 2018In Vitro Cytotoxicity and Morphological Assessments of GO-ZnO against the MCF-7 Cells: Determination of Singlet Oxygen by Chemical Trappingcitations
- 2015High Quality Carbon Nanotubes on Conductive Substrates Grown at Low Temperaturescitations
Places of action
Organizations | Location | People |
---|
document
On-site application of solar-activated membrane (Cr–Mn-doped TiO2@graphene oxide) for the rapid degradation of toxic textile effluents
Abstract
Water treatment has become an emerging research field due to its eco-friendly nature and the economic feasibility of green photocatalysis. Herein, we synthesized promising, cost-effective, and ultralong-semiconductor TiO2 nanowires (NW), with the aim to degrade toxic azo dyes. The band gap of TiO2 NW was tuned through transition metals, i.e., chromium (Cr) and manganese (Mn), and narrowed by conjugation with high surface area graphene oxide (GO) sheets. Cr–Mn-doped TiO2 NWs were chemically grafted onto GO nanosheets and polymerized with sodium alginate to form a mesh network with an excellent band gap (2.6 eV), making it most suitable to act as a solar photocatalytic membrane. Cr–Mn-doped TiO2 NW @GO aerogels possess high purity and crystallinity confirmed by Energy Dispersive X-ray spectroscopy and X-ray diffraction pattern. A Cr–Mn-doped TiO2 NW @GO aerogels membrane was tested for the photodegradation of Acid Black 1 (AB 1) dye. The synthesized photocatalytic membrane in the solar photocatalytic reactor at conditions optimized by response surface methodology (statistical model) and upon exposure to solar radiation (within 180 min) degraded 100% (1.44 kg/m3/day) AB 1dye into simpler hydrocarbons, confirmed by the disappearance of dye color and Fourier transform infrared spectroscopy. An 80% reduction in water quality parameters defines Cr–Mn-doped TiO2 NW @GO aerogels as a potential photocatalytic membrane to degrade highly toxic pollutants.