People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Herzog, Dirk
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Optimization of large-scale aeroengine parts produced by additive manufacturing
- 2023Numerical and experimental investigation of the geometry dependent layer-wise evolution of temperature during laser powder bed fusion of Ti–6Al–4V
- 2023Development of a Hydrogen Metal Hydride Storage Produced by Additive Manufacturing
- 2023Predictive modeling of lattice structure design for 316L stainless steel using machine learning in the L-PBF process
- 2023Poster: Development of a Hydrogen Metal Hydride Storage Produced by Additive Manufacturing
- 2022Thermal conductivity of Ti-6Al-4V in laser powder bed fusion
- 2022Design Guidelines For Green Parts Manufactured With Stainless Steel In The Filament Based Material Extrusion Process For Metals (MEX/M)
- 2021Material modeling of Ti–6Al–4V alloy processed by laser powder bed fusion for application in macro-scale process simulation
- 2020Productivity optimization of laser powder bed fusion by hot isostatic pressing
- 2017Characterization of the anisotropic properties for laser metal deposited Ti-6Al-4 V
- 2017Process monitoring of laser remote cutting of carbon fiber reinforced plastics by means of reflecting laser radiationcitations
- 2016Laser cutting of carbon fibre reinforced plastics of high thicknesscitations
- 2016Analysis of residual stress formation in additive manufacturing of Ti-6Al-4V
- 2016Additive manufacturing of metalscitations
- 2015Investigations on the process strategy of laser remote cutting of carbon fiber reinforced plastics with a thickness of more than 5 MM
- 2015Fatigue Performance of Laser Additive Manufactured Ti–6al–4V in Very High Cycle Fatigue Regime up to 1E9 Cycles
- 2015Fatigue Performance of Laser Additive Manufactured Ti–6al–4V in Very High Cycle Fatigue Regime up to 1E9 Cycles
- 2014Low coherence interferometry in selective laser melting
- 2011Surface texturing by laser cladding
- 2008Laser welding of heat treatable steel during induction hardening
- 2008Inductively supported laser beam welding of high and ultra high strength steel grades
- 2008Laser welding of shape memory alloys for medical applications
Places of action
Organizations | Location | People |
---|
article
Thermal conductivity of Ti-6Al-4V in laser powder bed fusion
Abstract
With increasing maturity of the laser powder bed fusion (PBF-LB/M) process, the related products are becoming more complex. The more conventional parts are integrated into one design, the more requirements regarding local material properties arise. This concerns for instance products with high demands regarding temperature management. Here, different thermal conductivities within the part enable the control of the temperature distribution as well as the direction of heat flows. The realization of those local properties poses a challenge, though, as the use of multiple materials in PBF-LB/M is not broadly available. However, the different states of material in PBF-LB/M, i.e. bulk and powder material, provide the opportunity to create thermal metamaterials with locally varied thermal conductivities. To enable part design utilizing the bulk material as well as enclosed powder, this study investigates the respective thermal conductivities of Ti-6Al-4V. Powder and printed samples were measured at RT by the Modified Transient Plane Source method, resulting in an effective thermal conductivity of 0.13 W/mK for powder and 5.4 W/mK for bulk material (compared to 6.5 W/mK in prior experiments). For complete assessment of the powder material, because of the many uncertainties due to the particle size distribution and powder application, a computational model following the network modeling approach is created. The model is used to create a data set of 60 different powder bed configurations, which is then statistically evaluated to provide a description independent from powder packing. Finally, the application of the investigations to achieve thermal metamaterials capable of local temperature management with a single material is presented in a numerical study. Here, the use cases of thermal shielding as well as the concentration of heat flow is demonstrated.