Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meißner, Robert

  • Google
  • 8
  • 28
  • 117

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Searching the chemical space for effective magnesium dissolution modulators: a deep learning approach using sparse featurescitations
  • 2022Adsorption of oleic acid on magnetite facetscitations
  • 2021Weak adhesion detection – enhancing the analysis of vibroacoustic modulation by machine learning18citations
  • 2021Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning modelscitations
  • 2020A first-principles analysis of the charge transfer in magnesium corrosion58citations
  • 2020ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for magnesium substratescitations
  • 2019Data science based mg corrosion engineering41citations
  • 2019Data science based mg corrosion engineeringcitations

Places of action

Chart of shared publication
Lamaka, Sviatlana
4 / 8 shared
Feiler, Christian
5 / 8 shared
Cyron, Christian Johannes
2 / 2 shared
Aydin, Roland
2 / 3 shared
Schiessler, Elisabeth J.
2 / 2 shared
Vaghefinazari, Bahram
1 / 5 shared
Zheludkevich, Mikhail
5 / 18 shared
Würger, Tim
6 / 10 shared
Noei, Heshmat
1 / 20 shared
Arndt, Björn
1 / 1 shared
Stierle, Andreas
1 / 28 shared
Tober, Steffen
1 / 4 shared
Konuk, Mine
1 / 2 shared
Creutzburg, Marcus
1 / 7 shared
Boll, Benjamin
1 / 1 shared
Willmann, Erik
1 / 1 shared
Fiedler, Bodo
1 / 39 shared
Vonbun-Feldbauer, Gregor
2 / 4 shared
Boelen, B.
1 / 5 shared
Terryn, Herman
1 / 124 shared
Unbehau, Reneé
1 / 1 shared
Fockaert, Laura Lynn
1 / 1 shared
Mol, J. M. C.
1 / 93 shared
Feldbauer, Gregor
1 / 1 shared
Zheludkevich, Mikhail L.
1 / 24 shared
Höche, Daniel
2 / 16 shared
Lamaka, Sviatlana V.
1 / 3 shared
Musil, Félix
2 / 2 shared
Chart of publication period
2023
2022
2021
2020
2019

Co-Authors (by relevance)

  • Lamaka, Sviatlana
  • Feiler, Christian
  • Cyron, Christian Johannes
  • Aydin, Roland
  • Schiessler, Elisabeth J.
  • Vaghefinazari, Bahram
  • Zheludkevich, Mikhail
  • Würger, Tim
  • Noei, Heshmat
  • Arndt, Björn
  • Stierle, Andreas
  • Tober, Steffen
  • Konuk, Mine
  • Creutzburg, Marcus
  • Boll, Benjamin
  • Willmann, Erik
  • Fiedler, Bodo
  • Vonbun-Feldbauer, Gregor
  • Boelen, B.
  • Terryn, Herman
  • Unbehau, Reneé
  • Fockaert, Laura Lynn
  • Mol, J. M. C.
  • Feldbauer, Gregor
  • Zheludkevich, Mikhail L.
  • Höche, Daniel
  • Lamaka, Sviatlana V.
  • Musil, Félix
OrganizationsLocationPeople

article

Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models

  • Lamaka, Sviatlana
  • Feiler, Christian
  • Cyron, Christian Johannes
  • Aydin, Roland
  • Schiessler, Elisabeth J.
  • Zheludkevich, Mikhail
  • Würger, Tim
  • Meißner, Robert
Abstract

The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.

Topics
  • impedance spectroscopy
  • compound
  • corrosion
  • Magnesium
  • magnesium alloy
  • Magnesium
  • random
  • machine learning