Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Milatz, Marius

  • Google
  • 5
  • 9
  • 0

Technische Universität Braunschweig

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Investigation of coated hydrophobic granular materials by means of computed tomography and environmental scanning electron microscopycitations
  • 2023Investigation of coated hydrophobic granular materials by means of computed tomography and environmental scanning electron microscopycitations
  • 2023Pore scale investigation of unsaturated granular soil behaviour by means of in situ CT experimentscitations
  • 2021Quantitative 3D imaging of partially saturated granular materials under uniaxial compressioncitations
  • 2020Application of single-board computers in experimental research on unsaturated soilscitations

Places of action

Chart of shared publication
Toffoli, Clara
2 / 2 shared
Grabe, Jürgen
3 / 4 shared
Heinrich, Dennis
1 / 1 shared
Hüsener, Nicole
1 / 1 shared
Viggiani, Gioacchino
1 / 4 shared
Andò, Edward
1 / 3 shared
Cardoso, Rafaela
1 / 5 shared
Romero, Enrique
1 / 5 shared
Jommi, Cristina
1 / 1 shared
Chart of publication period
2024
2023
2021
2020

Co-Authors (by relevance)

  • Toffoli, Clara
  • Grabe, Jürgen
  • Heinrich, Dennis
  • Hüsener, Nicole
  • Viggiani, Gioacchino
  • Andò, Edward
  • Cardoso, Rafaela
  • Romero, Enrique
  • Jommi, Cristina
OrganizationsLocationPeople

document

Application of single-board computers in experimental research on unsaturated soils

  • Cardoso, Rafaela
  • Romero, Enrique
  • Jommi, Cristina
  • Milatz, Marius
Abstract

In this contribution, the application of single-board computers for the investigation of the hydro-mechanical behaviour of unsaturated granular soils is presented. Single-board computers, such as the Raspberry Pi or Arduino, have recently experienced a hype of applications in school and university teaching, in the maker scene, amongst hobbyists, but also in research. In combination with easy to learn and open programming languages, such as Python, individual experimental set-ups for research in unsaturated soil mechanics, using actuators and sensors can be easily developed with the help of different programmable hardware, such as stepper motors, analog-to-digital converters and other controller boards. For the experimental application in imaging of unsaturated granular soils by computed tomography (CT), we present a miniaturized uniaxial compression device for the measurement of unsaturated shear strength and capillary cohesion in CT-experiments. The device has already been applied for CT-imaging of the development of water distribution and capillary bridges in between different shear steps. Furthermore, a new fully programmable hydraulic experimental set-up for the automated investigation of transient hydraulic paths of the water retention curve of granular media is presented. Both devices have been developed in the framework of the Raspberry Pi single-board computer and Python programming language with simple and relatively inexpensive hardware components. In addition to the technical development of the testing devices, experimental results of the hydro-mechanical behaviour of unsaturated sand and glass beads, derived from uniaxial compression tests and water retention tests, will be presented.

Topics
  • impedance spectroscopy
  • experiment
  • tomography
  • glass
  • glass
  • strength
  • compression test
  • ultraviolet photoelectron spectroscopy