Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brinker, Manuel

  • Google
  • 5
  • 12
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024A Mott-Schottky Analysis of Mesoporous Silicon in Aqueous Electrolyte by Electrochemical Impedance Spectroscopycitations
  • 2024A Mott-Schottky analysis of mesoporous silicon in aqueous electrolyte solution by electrochemical impedance spectroscopy1citations
  • 2023Wafer-Scale Fabrication of Hierarchically Porous Silicon and Silica Glass by Active Nanoparticle-Assisted Chemical Etching and Pseudomorphic Thermal Oxidation2citations
  • 2021Wafer-Scale Electroactive Nanoporous Silicon: Large and Fully Reversible Electrochemo-Mechanical Actuation in Aqueous Electrolytes11citations
  • 2020Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material33citations

Places of action

Chart of shared publication
Huber, Patrick
5 / 23 shared
Zeller-Plumhoff, Berit
1 / 20 shared
Gries, Stella
1 / 1 shared
Rings, Dagmar
1 / 1 shared
Longo, Elena
1 / 4 shared
Greving, Imke
1 / 10 shared
Krekeler, Tobias
2 / 19 shared
Richert, Claudia
1 / 2 shared
Keller, Thomas F.
1 / 24 shared
Huber, Norbert
1 / 16 shared
Dittrich, Guido
1 / 4 shared
Lakner, Pirmin
1 / 4 shared
Chart of publication period
2024
2023
2021
2020

Co-Authors (by relevance)

  • Huber, Patrick
  • Zeller-Plumhoff, Berit
  • Gries, Stella
  • Rings, Dagmar
  • Longo, Elena
  • Greving, Imke
  • Krekeler, Tobias
  • Richert, Claudia
  • Keller, Thomas F.
  • Huber, Norbert
  • Dittrich, Guido
  • Lakner, Pirmin
OrganizationsLocationPeople

document

Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material

  • Richert, Claudia
  • Keller, Thomas F.
  • Huber, Norbert
  • Brinker, Manuel
  • Dittrich, Guido
  • Huber, Patrick
  • Lakner, Pirmin
  • Krekeler, Tobias
Abstract

The absence of piezoelectricity in silicon makes direct electromechanical applications of this mainstream semiconductorimpossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectivesfor on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon withpolymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopicelectrostrain in aqueous electrolyte. The voltage-strain coupling is three orders of magnitude larger than the best-performingceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted actionof 100 billions of nanopores per square centimeter cross section and to potential-dependent pressures of up to150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4 to 0.9 volts), along withthe sustainable and biocompatible base materials, make this hybrid promising for bioactuator applications.

Topics
  • impedance spectroscopy
  • pore
  • semiconductor
  • composite
  • Silicon
  • ceramic