Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Behrouzi, Arash

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Inherent and induced anisotropic finite visco-plasticity with applications to the forming of DC06 sheets7citations

Places of action

Chart of shared publication
Bargmann, Swantje
1 / 32 shared
Soyarslan, Celal
1 / 22 shared
Klusemann, Benjamin
1 / 110 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Bargmann, Swantje
  • Soyarslan, Celal
  • Klusemann, Benjamin
OrganizationsLocationPeople

article

Inherent and induced anisotropic finite visco-plasticity with applications to the forming of DC06 sheets

  • Bargmann, Swantje
  • Soyarslan, Celal
  • Behrouzi, Arash
  • Klusemann, Benjamin
Abstract

© 2014 The Authors. In the current work we present a finite visco-plasticity model accounting for inherent and induced plastic anisotropy as well as Bauschinger effect for the interstitial free (IF) steels and its application to a forming process simulation of DC06 sheets. The inherent plastic anisotropy uses a Hill-48 type structural tensor whereas the induced anisotropy is modeled via its evolution accounting for dynamic (active) and latent (inactive) parts. The latter appears to be an eminent requirement for predicting the qualitative effect of the evolving dislocation microstructures under orthogonal loading path changes, i.e., the cross hardening. A nonlinear isotropic and Armstrong-Frederick type kinematic hardening is also involved. Finally, the rate dependence of the plastic response is incorporated using Johnson-Cook type formulation. The model is implemented as VUMAT user defined material subroutine for ABAQUS and used in a set of sensitivity analyses to present mentioned model features. The model parameters are identified based on a set of experiments involving monotonic shear, uniaxial tension, forward to reverse shear and plane strain tension followed by shear tests. Finally, the channel forming process of a DC06 sheet is simulated. A good agreement with the experimental findings is observed, in both the tool response history curves and the extent of spring-back which is conclusive on the final product geometry.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • experiment
  • simulation
  • anisotropic
  • steel
  • shear test
  • dislocation
  • forming
  • plasticity
  • isotropic
  • interstitial