People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Noei, Heshmat
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Probing active sites on Pd/Pt alloy nanoparticles by CO adsorptioncitations
- 2024Probing Active Sites on Pd/Pt Alloy Nanoparticles by CO Adsorption
- 2022Adsorption of oleic acid on magnetite facets
- 2022Adsorption of oleic acid on magnetite facetscitations
- 2022Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivitycitations
- 2021A model study on controlling dealloying corrosion attack by lateral modification of surfactant inhibitorscitations
- 2021A model study on controlling dealloying corrosion attack by lateral modification of surfactant inhibitorscitations
- 2021Heterogeneous Adsorption and Local Ordering of Formate on a Magnetite Surfacecitations
- 2020Lateral Variation of the Native Passive Film on Super Duplex Stainless Steel Resolved by Synchrotron Hard X-Ray Photoelectron Emission Microscopycitations
- 2019Surface Reconstruction under the Exposure of Electric Fields Enhances the Reactivity of Donor-Doped SrTiO$_{3}$citations
- 2019Tuning the Elasticity of Cross-Linked Gold Nanoparticle Assembliescitations
- 2019Elasticity of cross-linked titania nanocrystal assemblies probed by AFM-bulge testscitations
- 2019Modulating the Mechanical Properties of Supercrystalline Nanocomposite Materials via Solvent–Ligand Interactionscitations
- 2018Adsorption of acetone on rutile TiO2: a DFT and FTIRS study
- 2015Ionic Liquid-Assisted Sonochemical Preparation of CeO2 Nanoparticles for CO Oxidationcitations
- 2015The Interaction of Formic Acid with Zinc Oxide: A Combined Experimental and Theoretical Study on Single Crystal and Powder Samplescitations
- 2012Rare-earth substituted HfO2 thin films grown by metalorganic chemical vapor deposition
- 2012The Surface Science Approach for Understanding Reactions on Oxide Powders: The Importance of IR Spectroscopycitations
- 2011Novel synthesis of mesoporous nanocomposite Co/Al2O3 catalysts for Fischer-Tropsch and higher alcohol synthesis
- 2010Hydrogen Loading of Oxide Powder Particles: A Transmission IR Study for the Case of Zinc Oxidecitations
Places of action
Organizations | Location | People |
---|
article
Adsorption of acetone on rutile TiO2: a DFT and FTIRS study
Abstract
Acetone adsorbed on rutile TiO 2 nanoparticles was investigated with respect to its energetic, vibrational, and chemical properties. Temperature-dependent ultrahigh-vacuum Fourier transform infrared spectroscopy measurements for different acetone dosages (4.5-900 L) give insights into the acetone adsorption behavior. Those experiments indicate thermal-induced reactions of acetone on rutile TiO 2 surfaces yielding new species. Density functional theory calculations were performed to investigate acetone adsorption on rutile TiO 2 (110). Particularly, the importance of sampling the adsorption configuration space is shown. Adsorption geometries that are energetically significantly more favorable than the commonly used high-symmetry configurations are presented. To facilitate the comparability to the experiment, theoretical infrared spectra were computed using density functional perturbation theory for various acetone adsorption geometries using different exchange-correlation functionals. Additionally, computational spectra were obtained for several species which are potential products from reactions of acetone on TiO 2 surfaces. The investigated species are η 2 -acetate, η 2 -diolate, η 1 -enolate, and mesityl oxide. For η 1 -acetone, experimental and calculated spectra fit well for low temperatures, whereas for elevated temperatures, emerging bands indicate the formation of diolate.