People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salikov, Vitalij
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
document
Novel, highly-filled ceramic–polymer composites synthesized by a spouted bed spray granulation process
Abstract
We present a novel processing route to synthesize homogeneous ceramic polymer composites with ultrahigh (~78 vol.%) packing density by using the spouted bed granulation technology and subsequent warm pressing. In the granulation process, two ceramic particle size fractions (alpha-Al2O3) and a thermoplastic polymer (polyvinyl butyral) are assembled to granules. In the process, lm-sized particles are coated with a layer of polymer which contains a second, nm-sized ceramic particles fraction. The mass fractions of each constituents can be adjusted independently. During the warm pressing, the nm-sized particle fraction along with polymer is pressed into the void volume of the lm-sized particles, thus achieving a homogeneous, isotropic composite structure with a very high packing density of ceramic particles. The material, which can easily be produced in large quantities, combines a high modulus of elasticity (up to 69 GPa), tensile strength (~50 MPa), and pronounced fracture strain (~0.1%) with an isotropic, biocompatible, metal-free composition. Possible failure mechanisms are discussed, including failure due to necking of the polymer, and failure due to limited polymer–particle-interfacial strength.