People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Walther, Prof. Dr.-Ing. Frank
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Fatigue Assessment of Carbon Fiber-Reinforced Polyurethane with Regard to Crack Initiation and Propagationcitations
- 2022Uniform fatigue damage tolerance assessment for additively manufactured and cast Al-Si alloyscitations
- 2021Electron beam powder bed fusion of γ-titanium aluminidecitations
- 2021Targeted residual stress generation in single and two point incremental sheet forming (ISF)citations
- 2021Additive manufacturing of a carbon-martensitic hot-work tool steel using a powder mixturecitations
- 2020Influence of anisotropic damage evolution on cold forgingcitations
- 2020Development of an energy-based approach for optimized frequency selection for fatigue testing on polymerscitations
- 2015Fatigue Performance of Laser Additive Manufactured Ti–6al–4V in Very High Cycle Fatigue Regime up to 1E9 Cycles
Places of action
Organizations | Location | People |
---|
article
Fatigue Performance of Laser Additive Manufactured Ti–6al–4V in Very High Cycle Fatigue Regime up to 1E9 Cycles
Abstract
Additive manufacturing technologies are in the process of establishing themselves asan alternative production technology to conventional manufacturing, such as castingor milling. Especially laser additive manufacturing (LAM) enables the production ofmetallic parts with mechanical properties comparable to conventionally manufacturedcomponents. Due to the high geometrical freedom in LAM, the technology enablesthe production of ultra-light weight designs, and therefore gains increasing importancein aircraft and space industry. The high quality standards of these industries demandpredictability of material properties for static and dynamic load cases. However, fatigueproperties especially in the very high cycle fatigue (VHCF) regime until 109 cycles havenot been sufficiently determined yet. Therefore, this paper presents an analysis offatigue properties of laser additive manufactured Ti–6Al–4V under cyclic tension–tensionuntil 107 cycles and tension–compression load until 109 cycles. For the analysisof laser additive manufactured titanium alloy Ti–6Al–4V, Woehler fatigue tests undertension–tension and tension–compression were carried out in the high cycle and VHCFregime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions wereanalyzed regarding crack initiation site, mean stress sensitivity, and overall fatigue performance.The determined fatigue properties show values in the range of conventionallymanufactured Ti–6Al–4V with particularly good performance for hot-isostatic-pressedadditive-manufactured material. For all conditions, the results show no conventionalfatigue limit but a constant increase in fatigue life with decreasing loads. No effectsof test frequency on life span could be determined. However, independently of testingprinciple, a shift of crack initiation from surface to internal initiation could be observedwith increasing cycles to failure.