People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seri, Paolo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Screening of suitable random copolymer polypropylene blends for HVDC cable insulationcitations
- 2024Screening of suitable random copolymer polypropylene blends for HVDC cable insulationcitations
- 2024Characterization of Isotactic-Polypropylene-Based Compounds for HVDC Cable Insulationcitations
- 2024Characterization of Isotactic-Polypropylene-Based Compounds for HVDC Cable Insulationcitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2022Effect of Voltage Slew Rate on Partial Discharge Phenomenology During Voltage Transient in HVDC Insulation: The Case of Polymeric Cablescitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitorscitations
- 2022Experimental Investigation of the Effect of Transient Overvoltages on XLPE-insulated HVDC Cables
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitors: morphology-dielectric property relationships, and critical evaluation of the current progress and limitationscitations
- 2022Biaxially oriented silica–polypropylene nanocomposites for HVDC film capacitors : morphology-dielectric property relationships, and critical evaluation of the current progress and limitationscitations
- 2022Biaxially oriented silica-polypropylene nanocomposites for HVDC film capacitors: Morphology-dielectric property relationships, and critical evaluation of the current progress and limitationscitations
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation : Are silica clusters beneficial for space charge accumulation?citations
- 2021Dielectric Performance of Silica-Filled Nanocomposites Based on Miscible (PP/PP-HI) and Immiscible (PP/EOC) Polymer Blendscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation: Are silica clusters beneficial for space charge accumulation?citations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulation:Are silica clusters beneficial for space charge accumulation?citations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulationcitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2019Investigation of nanocomposite polypropylene for DC capacitors:A feasibility studycitations
- 2019Investigation of Nanocomposite Polypropylene for DC Capacitors: A Feasibility Studycitations
- 2018Compounding, Structure and Dielectric Properties of Silica-BOPP Nanocomposite Filmscitations
- 2018Compounding, Structure and Dielectric Properties of Silica-BOPP Nanocomposite Filmscitations
- 2018Compounding, Structure and Dielectric Properties of Silica-BOPP Nanocomposite Filmscitations
- 2017Polypropylene/SIO2 nanocomposite with improved dielectric properties for DC cables
- 2017Nanocomposite Polypropylene For DC Cables And Capacitorscitations
- 2017Nanocomposite Polypropylene For DC Cables And Capacitors:A New European Projectcitations
Places of action
Organizations | Location | People |
---|
article
Investigation of Nanocomposite Polypropylene for DC Capacitors: A Feasibility Study
Abstract
This paper presents a preliminary feasibility investigation, in the framework of a recent European project, GRIDABLE, aiming at the development of nanostructured Polypropylene, PP, materials as insulation for DC LV-MV capacitors and MV-HV cables. Results of electrical property characterization of various types of PP-SiO2 materials for DC capacitors are presented in this paper, focusing on breakdown strength and space charge measurements. They indicate that the nanofiller may influence the degradation rate of materials, modifying the space charge accumulation dynamics and extent, as well as the threshold field value for space charge accumulation. Statistical analysis of breakdown voltage shows that the presence of nanoparticles may also improve noticeably the breakdown behavior.