Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Matveev, Vadim

  • Google
  • 3
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Hydrogen production with reduced energy consumption for use in fuel cells and energy sectorcitations
  • 2023Electrochemical production of hydrogen in reactors with reduced energy costs8citations
  • 2023Hydrogen production in a combined electrochemical system: Cathode process1citations

Places of action

Chart of shared publication
Sukhyi, Mykhailo
1 / 1 shared
Polishchuk, Yuliya
2 / 3 shared
Nefedov, Volodymyr
2 / 2 shared
Bluss, Borys
1 / 1 shared
Bulat, Anatolii
1 / 1 shared
Mukhachev, Anatoliy
1 / 1 shared
Sukhyy, Kostiantyn
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sukhyi, Mykhailo
  • Polishchuk, Yuliya
  • Nefedov, Volodymyr
  • Bluss, Borys
  • Bulat, Anatolii
  • Mukhachev, Anatoliy
  • Sukhyy, Kostiantyn
OrganizationsLocationPeople

article

Hydrogen production in a combined electrochemical system: Cathode process

  • Matveev, Vadim
Abstract

<jats:p>Today, hydrogen is recognized as a promising fuel, which is characterized by high heat generation and combustion temperature. It is also characterized by environmental safety due to the fact that no greenhouse gases are formed during the combustion of hydrogen. There are various methods of hydrogen production: traditional methods, which include electrolysis of water and conversion of hydrocarbons, and thermochemical ones. A cheap method of hydrogen obtaining from natural gas and coke is accompanied by the carbon oxides formationю Thermochemical methods are require high temperatures (up to 1000°C). The method for hydrogen production by electrolysis of aqueous solutions of alkali metal hydroxides is the most energy-intensive. However, it is considered one of the most promising in the European Union. To reduce energy consumption for hydrogen production, the authors suggest replacingthe positive electrode, which normally produces oxygen, with a dissolving anode with an equilibrium potential lower than that of oxygen, such as an iron electrode. In this case, with such a combined electrochemical method, the decomposition voltage in the system will be 0.44 V against 1.23 V with traditional water electrolysis. The overvoltage of iron dissolution in a chloride medium is several tens of millivolts. However, the potential difference between the anode and cathode ΔU becomes smaller than the equilibrium potential difference ΔE0 = 0.44 V. This research aims to substantiate the choice of the composition and concentration of electrolytes: catholyte –to ensure conditions for reducing energy consumption for hydrogen release; anolyte – to prevent passivation of the iron anode, which can lead to the oxygen release. This work results in research of the cathodic process of hydrogen release in the following solutions: 1 M (= mol/L) NaCl with the addition of 1 M hydrochloric acid in the amount of 5, 10, 15, 20 mL. Platinum is used as a cathode for the electrolysis process. The anode material is an iron, St3 grade. It has been found that in the range of changes in the composition of the electrolyte from neutral (1 M NaCl) to acidic (1 M HCl), a change in the mechanism of water discharge is observed. In a neutral medium, the discharging occurs according to the Heyrovsky mechanism, and in an acidic medium - according to the Volmer mechanism. The choice of the anolyte composition and concentration is complicated by the need to provide an acidic medium containing chlorine ions to prevent passivation of the anode. The acidity of the solution must be at least 3 for the successful extraction of dissolution products of the iron anode.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • Oxygen
  • extraction
  • Platinum
  • Hydrogen
  • combustion
  • iron
  • decomposition
  • Alkali metal
  • dissolving