Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Çetin, Nihat Sami

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Plastic/fiber composite using recycled polypropylene and fibers from Sorghum halepense L.2citations

Places of action

Chart of shared publication
Eroğlu, Özen
1 / 1 shared
Narlıoğlu, Nasır
1 / 1 shared
Yan, Wenqing
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Eroğlu, Özen
  • Narlıoğlu, Nasır
  • Yan, Wenqing
OrganizationsLocationPeople

article

Plastic/fiber composite using recycled polypropylene and fibers from Sorghum halepense L.

  • Eroğlu, Özen
  • Çetin, Nihat Sami
  • Narlıoğlu, Nasır
  • Yan, Wenqing
Abstract

<jats:p>Leaf and stem fibers of Sorghum halepense L. (SH) were investigated as fillers for recycled polypropylene (RPP) at 10, 20, and 30 wt%. The effects of SH in RPP on the thermal and mechanical properties of composites were investigated by tensile and bending tests, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). It was found that mechanical properties of the RPP composites decreased but their elasticity modulus increased. The addition of SH fibers to the polymer matrix changed the thermal properties of RPP. A slight decrease in DSC crystallinity was observed with the addition of 10% SH leaf and stem fiber to the polymer matrix and then the percentages of crystallinity increased with the addition of 20% and 30% SH leaf and stem fiber. The SEM images showed that the SH fibers mixed well with the polymer matrix without agglomeration, and the fracture sections of the composites were less rough than that of the RPP by itself.</jats:p>

Topics
  • polymer
  • scanning electron microscopy
  • laser emission spectroscopy
  • composite
  • thermogravimetry
  • bending flexural test
  • elasticity
  • differential scanning calorimetry
  • crystallinity