People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vuorinen, Tapani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2021Mild alkaline separation of fiber bundles from eucalyptus bark and their composites with cellulose acetate butyratecitations
- 2019Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodescitations
- 2016Composites of high-temperature thermomechanical pulps and polylactic acidcitations
- 2016Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gelcitations
- 2015Chemical characteristics of squeezable sap of hydrothermally treated silver birch logs (Betula pendula)citations
- 2015The Effect of Hydrothermal Treatment on the Color Stability and Chemical Properties of Birch Veneer Surfacescitations
- 2015Chemical characteristics of squeezable sap of hydrothermally treated silver birch logs (Betula pendula):Effect of treatment time and the quality of the soaking water in pilot scale experimentcitations
- 2012Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopycitations
- 2011The effect of hydrothermal pre-treatment on the chemical characteristics of the xylem of silver birch
Places of action
Organizations | Location | People |
---|
article
Composites of high-temperature thermomechanical pulps and polylactic acid
Abstract
High-temperature thermomechanical pulps (HT-TMP, defibrated at 150 to 170 degrees C) were compared to a reference TMP (defibrated at 130 degrees C) as a reinforcement for polylactic acid (PLA). Composites were prepared by melt compounding, followed by injection molding, gradually increasing the used fiber content from 0 to 20 wt.%. The injection-molded specimens were characterized by tensile and impact strength tests, scanning electron microscopy, water absorption tests, and differential scanning calorimetry. The TMP fiber damage was also characterized before and after melt compounding by optical analysis. At 20% fiber content, the Young's modulus increased significantly, while the tensile strength remained unchanged and the impact strength decreased slightly. All fibers suffered damage during melt compounding, but the tensile strength remained about the same as in pure PLA. All types of TMP were able to increase the PLA rate of crystallization. The HT-TMP fibers were dispersed more evenly in PLA than the 130degrees C TMP. The 170 degrees C TMP produced composites of lower water absorption than the other two TMP types, probably because of its lower hemicellulose content and its higher surface coverage by lignin. ; Peer reviewed