Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sboeva, Yanna

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Molecular genetic identification of Scots pine and Siberian larch populations in Perm Krai based on polymorphism of ISSR-PCR markers4citations

Places of action

Chart of shared publication
Martynenko, N.
1 / 5 shared
Pystogova, N.
1 / 1 shared
Boronnikova, Svetlana
1 / 1 shared
Vasileva, Yulia
1 / 1 shared
Chertov, N.
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Martynenko, N.
  • Pystogova, N.
  • Boronnikova, Svetlana
  • Vasileva, Yulia
  • Chertov, N.
OrganizationsLocationPeople

article

Molecular genetic identification of Scots pine and Siberian larch populations in Perm Krai based on polymorphism of ISSR-PCR markers

  • Martynenko, N.
  • Sboeva, Yanna
  • Pystogova, N.
  • Boronnikova, Svetlana
  • Vasileva, Yulia
  • Chertov, N.
Abstract

The use of DNA-fingerprinting of forest-forming woody plants is considered the most promising tool for genetic control of wood’s geographic origin, the formation of a reliable management system for harvesting and turnover of lumber. The purpose of this work was to search for identification markers, genotyping trees, and molecular genetic identification of previously not studied 2 populations of the Siberian larch Larix sibirica Ledeb. and 4 populations of Scots pine Pinus sylvestris L. of different regions of the Perm Krai. To DNA extraction, from each plant specimens wood were individually obtained and a modified method of extracting DNA from wood was used. In total, the analysis used the DNA of 114 Scots pine trees and 55 Siberian larch trees. For genetic testing, we used ISSR (Inter Simple Sequence Repeats)-method of DNA polymorphism analysis. Genetic identification was performed based on the original author's method proposed by S. V. Boronnikova and I. V. Boboshina (2014). As a result of molecular genetic analysis, 74 ISSR markers were found and analyzed in populations of Scots pine, 85 ISSR markers were identified in populations of the Siberian larch, and the share of polymorphic loci in both species was high. As a result of molecular genetic identification, identification of species and polymorphic ISSR-markers and their combinations were found that characterize the belonging of trees to a species, as well as to a specific population. Molecular genetic formulas and barcodes for each individual population of two species have been compiled. The effectiveness, stability, and reproducibility of detected identification markers and their combinations have been proven through anonymous testing. The data obtained are the basis for determining the place of origin of wood, which will allow us to recommend measures to counter illegal logging and reduce the damage to the budget of logging regions of Russia, such as the Perm Krai.

Topics
  • impedance spectroscopy
  • extraction
  • forming
  • wood