People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Verbovytskyy, Yuriy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Electrochemical Hydrogenation Properties of New YNi3 and YNi4 Based Alloyscitations
- 2021Solid gas and electrochemical hydrogenation of the selected alloys (R’,R’’)2-Mg Ni4-Co (R’, R’’ = Pr, Nd; x = 0.8–1.2; y = 0–2)citations
- 2020Solid gas and electrochemical hydrogenation properties of the selected R,R’MgNi4-xMx (R,R’ = La, Pr, Nd; M = Fe, Mn; x = 0.5, 1) alloyscitations
- 2020Solid gas and electrochemical hydrogenation properties of the selected R,R’MgNi4-xMx (R,R’ = La, Pr, Nd; M = Fe, Mn; x = 0.5, 1) alloys
- 2020Solid gas and electrochemical hydrogenation properties of the R1-xR’xMgNi4-yCoy (R, R’ = Y, La, Ce) alloyscitations
- 2017Mössbauer and heat capacity studies of ErZnSn_{2}
- 2017Mössbauer and heat capacity studies of ErZnSn2
Places of action
Organizations | Location | People |
---|
article
Solid gas and electrochemical hydrogenation properties of the R1-xR’xMgNi4-yCoy (R, R’ = Y, La, Ce) alloys
Abstract
<jats:p>New R1-xR’xMgNi4-yCoy (R, R’ = Y, La, Ce; x = 0.5; y = 0, 1, 2) alloys have been synthesized by powder sintering method, and their crystal structure and hydrogen storage properties have been studied. X-ray diffraction analysis showed that R1-xR’xMgNi4-yCo alloys belong to the MgCu4Sn-type structure. The synthesized alloys absorb hydrogen at room temperature and hydrogen pressure 0.1-10 bar. For some of the studied compounds, the formation of hydrides with cubic and orthorhombic structures was found. Highest hydrogen content is found for the Co-rich compounds: La0.5Y0.5MgNi2Co2H5.18 and La0.5Ce0.5MgNi2Co2H6.48. Electrochemical studies showed that Y-based electrode materials exhibit better electrochemical performance comparing with Ce-doped ones. Highest discharge capacity of 292 mА∙h/g was observed for La0.5Y0.5MgNi3Co, but the best cyclic stability after 50th cycle of 92% was seen for La0.5Y0.5MgNi2Co2. Additionally, obtained results of the electrochemical properties were compared with related compounds. High rate dischargeability of Co-free alloys at I = 1 A/g were twice higher than ones containing cobalt.</jats:p>