Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uddin, M. S.

  • Google
  • 2
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Design, development, calibration, and testing of indigenously developed strain gauge based dynamometer for cutting force measurement in the milling process11citations
  • 2005SYNTHESIS AND CHARACTERIZATION OF DOUBLE SURFACTANT COATED MAGNETIC PARTICLES1citations

Places of action

Chart of shared publication
Mohanraj, T.
1 / 4 shared
Rajasekar, R.
1 / 3 shared
Shankar, S.
1 / 7 shared
Hong, L.
1 / 5 shared
Hidajat, K.
1 / 1 shared
Peng, Z.
1 / 8 shared
Chart of publication period
2020
2005

Co-Authors (by relevance)

  • Mohanraj, T.
  • Rajasekar, R.
  • Shankar, S.
  • Hong, L.
  • Hidajat, K.
  • Peng, Z.
OrganizationsLocationPeople

article

Design, development, calibration, and testing of indigenously developed strain gauge based dynamometer for cutting force measurement in the milling process

  • Uddin, M. S.
  • Mohanraj, T.
  • Rajasekar, R.
  • Shankar, S.
Abstract

<jats:p>In this work, a milling dynamometer based on strain gauge with an octagonal and square ring was designed and tested. Strain gauges were attached with the mechanical rings to detect the deformation, during the machining process. Wheatstone bridge circuit was equipped with gauges to acquire the strain as voltage owing to the deformation of mechanical rings when machining takes place. The finite element analysis (FEA) was used to identify the location of maximum deformation and stress. The direction of rings and location of gauges were decided to increase the sensitivity and decrease the cross-sensitivity. Then, the cutting force was acquired through NI 6221 M series data acquisition (DAQ) card. The dynamometer had undergone a cycle of tests to verify its static and dynamic characteristics. The metrological characterization was performed according to the calibration procedure based on ISO 376 – 2011 standard. The cutting force was measured with both the dynamometers through milling experiments based on Taguchi’s L9 orthogonal array and the results were recorded. The measured cutting force varied from 300 N to 550 N. The obtained results depicted that low-cost milling dynamometer was reliable to measure the three component machining force. Overall, the square ring based dynamometer provides the better static and dynamic characteristics in terms of linearity, cross-sensitivity (4%), uncertainty (0.054%), and natural frequency (362.41 rev/s).</jats:p>

Topics
  • experiment
  • grinding
  • milling
  • finite element analysis