People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pearce, Carolyn
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022An amorphous sodium aluminate hydrate phase mediates aluminum coordination changes in highly alkaline sodium hydroxide solutionscitations
- 2018Stability, composition and core-shell particle structure of uranium(IV)-silicate colloidscitations
- 2018Response of Bentonite Microbial Communities to Stresses Relevant to Geodisposal of Radioactive Wastecitations
- 2016Radiation damage in biotite mica by accelerated α-particles: A synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy studycitations
- 2009Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic propertiescitations
- 2008Biomineralization: Linking the fossil record to the production of high value functional materialscitations
- 2007Time-resolved synchrotron X-ray powder diffraction study of biogenic nanomagnetitecitations
Places of action
Organizations | Location | People |
---|
article
Time-resolved synchrotron X-ray powder diffraction study of biogenic nanomagnetite
Abstract
The bacterium Geobacter sulfurreducens can produce nanoparticulate magnetite (Fe3O4) by the reduction of amorphous Fe(III) oxyhydroxide coupled to the oxidation of organic matter in the anoxic subsurface as an alternative to oxygen respiration. G. sulfurreducens can transfer electrons to solid Fe(III)-bearing minerals through either direct contact between the cell and the mineral surface or by using an electron shuttling compound. High-resolution synchrotron X-ray powder diffraction has been used to study samples taken at different stages of this reaction. This shows that an initial amorphous phase first transforms to goethite (FeO(OH)), before undergoing a further transformation to magnetite. Magnetite is formed faster in the presence of the electron shuttling compound disodium anthraquinone 2,6 disulphonate. © by Oldenbourg Wissenschaftsverlag.