Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Miyauchi, H.

  • Google
  • 2
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Durability of acrylic sealants applied to joints of autoclaved lightweight concrete walls: evaluation of exposure testing1citations
  • 2011Durability of Acrylic Sealants Applied to Joints of Autoclaved Lightweight Concrete Walls: Evaluation of Exposure Testingcitations

Places of action

Chart of shared publication
Murata, S.
2 / 2 shared
Enomoto, N.
2 / 2 shared
Tanaka, K.
2 / 15 shared
Lacasse, Michael A.
1 / 1 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Murata, S.
  • Enomoto, N.
  • Tanaka, K.
  • Lacasse, Michael A.
OrganizationsLocationPeople

booksection

Durability of Acrylic Sealants Applied to Joints of Autoclaved Lightweight Concrete Walls: Evaluation of Exposure Testing

  • Murata, S.
  • Enomoto, N.
  • Tanaka, K.
  • Miyauchi, H.
Abstract

In Japan acrylic sealants are traditionally the sealant products of choice when specified for use between autoclaved lightweight concrete (ALC) panels. Although, in general terms, the mechanisms of the deterioration of acrylic sealants are well known its long-term durability to outdoor exposure has not, however, been fully investigated. The research described in this paper focuses on the change in the properties and deterioration of acrylic sealant products when exposed to outdoor testing. The two stage project consisted of (i) on-site investigations of deteriorated acrylic sealants that had been placed in external joints of ALC-clad buildings; and (ii) outdoor exposure testing of different types of acrylic sealant in three climate regions located in Japan. The results of the work from the first stage of the study revealed the following. Two-sided adhesion joint configurations installed in deep panel ALC cladding were more reliable than three-sided adhesion joints used for thin panel ALC cladding from the viewpoint of the durability of the sealed joint installed in actual buildings. Most fractures of the sealed joint could be characterized as failure in peel (or thin layer cohesive failures), in which the sealant ruptured at the interface with the ALC substrate to which it was applied. Additionally, in 47 of 62 locations surveyed, surface cracks were apparent on the coating that had been applied to protect the sealant. The second stage of the project focused on the degree of deterioration of coated and non-coated acrylic sealants subjected to outdoor exposure testing in a cold, a warm, and a subtropical climate. Results from this stage showed that aging of the sealant, as determined by the degree of surface cracking, expectedly depended on the local temperature and the respective degree of exposure to solar radiation. It was determined that the longer the exposure period, the lower the tensile performance of the acrylic sealants. The elongation of three-sided adhesive joint configurations after 5 years exposure testing decreased remarkably and their maximum elongation was less than 50%. A significant number of sealed joints after 5 years ofexposure had ALC substrate failure

Topics
  • surface
  • laser emission spectroscopy
  • crack
  • aging
  • aging