People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Race, Christopher P.
University of Sheffield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Molecular dynamics simulations of neutron induced collision cascades in Zr — Statistical modelling of irradiation damage and potential applicationscitations
- 2024Fractional densities and character of dislocations in different slip modes from powder diffraction patternscitations
- 2023Interaction of monoclinic ZrO2 grain boundaries with oxygen vacancies, Sn and Nb - implications for the corrosion of Zr alloy fuel cladding
- 2023Dislocation density transients and saturation in irradiated zirconiumcitations
- 2023Breakaway Growth Modeling of Zirconium under Irradiation: The Importance of the Formation of a-Loop Layerscitations
- 2022Simulating intergranular hydrogen enhanced decohesion in aluminium using density functional theorycitations
- 2022A novel method for radial hydride analysis in zirconium alloyscitations
- 2022Breakaway Growth Modeling of Zirconium under Irradiation: The Importance of the Formation of a-Loop Layerscitations
- 2021The Importance of Substrate Grain Orientation on Local Oxide Texture and Corrosion Performance in α-Zr Alloyscitations
- 2021The Importance of Substrate Grain Orientation on Local Oxide Texture and Corrosion Performance in α-Zr Alloyscitations
- 2021Synthesis of new M-layer solid-solution 312 MAX phases (Ta1−xTix)3AlC2 (x = 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenescitations
- 2020Modelling Hydrogen Embrittlement using Density Functional Theory: A theoretical approach to understanding environmentally assisted cracking in 7xxx series aluminium alloyscitations
- 2019Imaging three-dimensional elemental inhomogeneity in Pt–Ni nanoparticles using spectroscopic single particle reconstructioncitations
- 2019The effect of irradiation temperature on damage structures in proton-irradiated zirconium alloyscitations
- 2018The Effect of Iron on Dislocation Evolution in Model and Commercial Zirconium Alloyscitations
- 2018Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloyscitations
- 2017Investigating the thermal stability of irradiation-induced damage in a zirconium alloy with novel in situ techniquescitations
Places of action
Organizations | Location | People |
---|
booksection
The Importance of Substrate Grain Orientation on Local Oxide Texture and Corrosion Performance in α-Zr Alloys
Abstract
Understanding the in-reactor corrosion behavior of zirconium alloys is essential for optimizing the lifetime of fuel assemblies. Recent advances in available experimental methods have enabled the characterization of oxide morphology, crystallography, and chemical heterogeneity with unprecedented detail for both autoclave and reactor formed oxides. Advanced high-resolution techniques have already improved the understanding of zirconium alloy corrosion performance. However, they are carried out on small volumes of material and require preparation of thin samples, which can lead to changes in the phase distribution in the oxide and often show varied results from different regions of a single bulk specimen. The present study utilizes high-spatial-resolution electron backscatter diffraction (EBSD) performed on bulk samples to produce spatially resolved microtexture data from nanograined zirconium oxide over a large area, which has not previously been possible. This advanced method of plan-view oxide texture analysis, alongside targeted focused ion beam cross-section measurements and substrate EBSD analysis, has revealed well-defined regions of monoclinic oxide grains that exhibit different textures depending on the orientation of the substrate grain on which they have formed. The observed variations in oxide texture have significant implications on any conclusions drawn solely from methods that are limited to the characterization of small areas—especially where sampling areas are smaller than the substrate grain size. Two competing mechanisms of oxide grain growth and nucleation are discussed, and detailed EBSD analysis illustrates a correlation between local oxide texture and corrosion rate. This analysis is performed on specimens of autoclave-tested Zircaloy-2 and ZIRLO and highlights differences in oxide texture development between the two alloys, indicating the significance of material composition and thermomechanical processing on corrosion behavior.