People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Colas, Kimberly
CEA Saclay
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Environmental degradation of nuclear materials: the use of advanced characterization techniques to understand physical and chemical phenomena
- 2021Impact of ion and neutron irradiation on the corrosion of the 6061-T6 aluminium alloy ; Influence de l'irradiation par ions et neutrons sur la corrosion de l'alliage d'aluminium 6061-T6citations
- 2021Impact of the microstructure on the swelling of aluminum alloys: characterization and modelling basescitations
- 2021Impact of ion and neutron irradiation on the corrosion of the 6061-T6 aluminium alloycitations
- 2020Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layerscitations
- 2020Effects of temperature and pH on uniform and pitting corrosion of aluminium alloy 6061-T6 and characterisation of the hydroxide layers ; Effet de la température et du pH sur la corrosion de l'alliage d'Al 6061-T6 et caractérisation des couches d'oxydescitations
- 2019Correlation between quenching rate, mechanical properties and microstructure in thick sections of Al Mg Si( Cu) alloyscitations
- 2019Effect of hardening on toughness captured by stress-based damage nucleation in 6061 aluminum alloycitations
- 2018Understanding of Corrosion Mechanisms after Irradiation: Effect of Ion Irradiation of the Oxide Layers on the Corrosion Rate of M5citations
- 2018Study of the influence of the initial pH on the aqueous corrosion of an Al-Mg-Si alloy at 70°C
- 2018Effect of ion irradiation of the metal matrix on the oxidation rate of Zircaloy-4citations
- 2018Microstructure Evolution in Ion-Irradiated Oxidized Zircaloy-4 Studied with Synchrotron Radiation Microdiffraction and Transmission Electron Microscopycitations
- 2017Stability of β″ nano-phases in Al-Mg-Si(-Cu) alloy under high dose ion irradiationcitations
- 2016Identification of monoclinic θ-phase dispersoids in a 6061 aluminium alloycitations
- 2015Influence of light ion irradiation of the oxide layer on the oxidation rate of Zircaloy-4citations
Places of action
Organizations | Location | People |
---|
conferencepaper
Understanding of Corrosion Mechanisms after Irradiation: Effect of Ion Irradiation of the Oxide Layers on the Corrosion Rate of M5
Abstract
Irradiation damage in fuel cladding material is mainly caused by the neutron flux that results from fission reactions occurring in the fuel. To avoid the constraints inherent in handling radioactive material, the irradiation effects on the corrosion resistance of zirconium alloys can be studied by irradiating the materials with ions. We performed an original experiment using ion irradiation to more specifically study the influence of irradiation damage in the oxide on the corrosion rate of M5®. It has been established that irradiation with a 1.3-MeV helium ion at a fluence of 1017 cm−2 results in significant modifications of oxide properties, oxygen diffusion flux, and oxidation kinetics, as evidenced by Raman spectroscopy, secondary ion mass spectrometry (SIMS) analyses, and measurements of mass gains. A newly identified Raman vibration band at 712 cm−1 was linked to the presence of irradiation defects and allowed the evolution of their concentrations to be followed. The oxygen diffusion flux was significantly reduced after irradiation partly due to a surface concentration decrease of oxygen. The defects remained present in the oxide after 100 days of annealing in pressurized water reactor (PWR) conditions and were thus very stable in PWR conditions, which probably means that these defects would be stable in the reactor. According to the kinetics and in agreement with the results obtained by SIMS analyses, the oxidation rate was significantly reduced after ion irradiation, and this effect remained beyond 100 days in agreement with the high stability of irradiation defects in PWR conditions. An original model described quite well the oxidation kinetic results.