People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Race, Christopher P.
University of Sheffield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Molecular dynamics simulations of neutron induced collision cascades in Zr — Statistical modelling of irradiation damage and potential applicationscitations
- 2024Fractional densities and character of dislocations in different slip modes from powder diffraction patternscitations
- 2023Interaction of monoclinic ZrO2 grain boundaries with oxygen vacancies, Sn and Nb - implications for the corrosion of Zr alloy fuel cladding
- 2023Dislocation density transients and saturation in irradiated zirconiumcitations
- 2023Breakaway Growth Modeling of Zirconium under Irradiation: The Importance of the Formation of a-Loop Layerscitations
- 2022Simulating intergranular hydrogen enhanced decohesion in aluminium using density functional theorycitations
- 2022A novel method for radial hydride analysis in zirconium alloyscitations
- 2022Breakaway Growth Modeling of Zirconium under Irradiation: The Importance of the Formation of a-Loop Layerscitations
- 2021The Importance of Substrate Grain Orientation on Local Oxide Texture and Corrosion Performance in α-Zr Alloyscitations
- 2021The Importance of Substrate Grain Orientation on Local Oxide Texture and Corrosion Performance in α-Zr Alloyscitations
- 2021Synthesis of new M-layer solid-solution 312 MAX phases (Ta1−xTix)3AlC2 (x = 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenescitations
- 2020Modelling Hydrogen Embrittlement using Density Functional Theory: A theoretical approach to understanding environmentally assisted cracking in 7xxx series aluminium alloyscitations
- 2019Imaging three-dimensional elemental inhomogeneity in Pt–Ni nanoparticles using spectroscopic single particle reconstructioncitations
- 2019The effect of irradiation temperature on damage structures in proton-irradiated zirconium alloyscitations
- 2018The Effect of Iron on Dislocation Evolution in Model and Commercial Zirconium Alloyscitations
- 2018Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloyscitations
- 2017Investigating the thermal stability of irradiation-induced damage in a zirconium alloy with novel in situ techniquescitations
Places of action
Organizations | Location | People |
---|
document
The Effect of Iron on Dislocation Evolution in Model and Commercial Zirconium Alloys
Abstract
While the evolution of irradiation-induced dislocation loops is well correlated with irradiation-induced growth phenomena, the effect of alloying elements on this evolution remains elusive, especially at low fluences. To develop a more mechanistic understanding of the role of Fe on loop formation, state-of-the-art techniques have been used to study a proton-irradiated Zr-0.1Fe alloy and proton- and neutronirradiated Zircaloy-2. The two alloys have been irradiated with 2 MeV protons up to 7 dpa at 350 °C and Zircaloy-2 up to 14.7 x1025 n m-2, ~24 dpa, in a BWR at ~300 °C. Baseline TEM characterisation showed that the Zr3Fe secondary phase particles in the binary system are larger and fewer in number than the Zr(Fe, Cr)2 and Zr2(Fe, Ni) particles in Zircaloy-2. Analysis of the irradiated binary alloy revealed only limited dissolution of Ze3Fe suggesting little dispersion of Fe into the matrix while at the same time a higher a-loop density is observed in comparison to that in Zircaloy-2 at equivalent proton dose levels. It was also found that the redistribution of Fe during irradiation leads to the formation of Fe nanoclusters. A delay in the onset of c-loop nucleation in proton-irradiated Zircaloy-2 compared to the binary alloy was observed. The effect of Fe redistributed from secondary phase particles, due to dissolution, on the density and morphology of a- and c-loops is described. The implication this may have on irradiation-induced growth of Zr fuel cladding is also discussed.