People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saux, Matthieu Le
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2021DLI-MOCVD Crx Cy coating to prevent Zr-based cladding from inner oxidation and secondary hydriding upon LOCA conditionscitations
- 2021Combined effects of temperature and of high hydrogen and oxygen contents on the mechanical behavior of a zirconium alloy upon cooling from the βZr phase temperature rangecitations
- 2020High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and processcitations
- 2020Phase transformations during cooling from the βZr phase temperature domain in several hydrogen-enriched zirconium alloys studied by in situ and ex situ neutron diffractioncitations
- 2020Breakaway oxidation of zirconium alloys exposed to steam around 1000 °Ccitations
- 2020A model to describe the cyclic anisotropic mechanical behavior of short fiber-reinforced thermoplasticscitations
- 2020Fatigue criteria for short fiber-reinforced thermoplastic validated over various fiber orientations, load ratios and environmental conditionscitations
- 2019Comportement mécanique d'un revêtement de chrome déposé sur un substrat en alliage de zirconium
- 2019In-situ time-resolved study of structural evolutions in a zirconium alloy during high temperature oxidation and coolingcitations
- 2019Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactorscitations
- 2019A model to describe the cyclic anisotropic mechanical behavior of short fiber-reinforced thermoplastics
- 2018High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubescitations
- 2017Secondary hydriding of zirconium-based fuel claddings at high temperature (LOCA conditions). Part 2: Effect of high hydrogen contents on metallurgical and mechanical properties. Part 1: Multi-scale study of hydrogen distribution
- 2017Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobecitations
- 2016Out-of-pile RandD on chromium coated nuclear fuel zirconium based claddings for enhanced accident tolerance in LWRs
- 2016CEA studies on High temperature oxidation and hydriding of Zr based nuclear fuel claddings upon LOCA transients phenomenology, mechanisms and modelling => consequences on mechanical properties
- 2016Mechanical behavior at high temperature of highly oxygen- or hydrogen-enriched α and (prior-) $beta$ phases of zirconium alloys
- 2016Mechanical behavior at high temperatures of highly oxygen- or hydrogen-enriched α and (Prior-) β phases of zirconium alloyscitations
- 2015In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperaturecitations
- 2010Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C under various stress states, including RIA loading conditionscitations
- 2008A model to describe the anisotropic viscoplastic mechanical behavior of fresh and irradiated Zircaloy-4 fuel claddings under RIA loading conditionscitations
Places of action
Organizations | Location | People |
---|
document
Mechanical behavior at high temperatures of highly oxygen- or hydrogen-enriched α and (Prior-) β phases of zirconium alloys
Abstract
Mechanical behavior at high temperature of highly oxygen-or hydrogen-enriched α and (prior-) β phases of zirconium alloys ABSTRACT: During a hypothetical loss-of-coolant accident (LOCA), zirconium alloy fuel claddings can be loaded by internal pressure and exposed to steam at high temperature (HT, potentially up to 1200°C), then cooled and water quenched. A significant fraction of the oxygen reacting with the cladding during HT oxidation diffuses beneath the oxide through the metallic substrate. This induces a progressive transformation of the metallic βZr phase layer into an intermediate layer of αZr(O) phase containing up to 7 wt.% of oxygen. Furthermore, in some specific conditions, the cladding may rapidly absorb a significant amount of hydrogen during steam exposition at HT. Being a βZr-stabilizer, hydrogen would mainly diffuse and concentrate up to several thousands of wt.ppm into the inner βZr phase layer. Oxygen and hydrogen are known to modify the metallurgical and mechanical properties of zirconium alloys but data are scarce for high contents, especially at HT. However, such data are important basic components to improve the assessment of the oxidized cladding mechanical behavior and integrity during and after LOCA-like thermal-mechanical transients. This study intended to provide new, more comprehensive data on the HT mechanical behavior of the αZr(O) and the (prior-) βZr phases containing high contents of oxygen and hydrogen, respectively. Model samples, produced from M5® 5 and Zircaloy-4 cladding tubes, homogeneously charged in oxygen (≤6 wt.%) and in hydrogen (≤3000 wt.ppm) respectively, were prepared. Their mechanical behavior was determined under vacuum between 800 and 1100°C for the oxygen-enriched αZr phase, and in air between 700 and 20°C, after cooling from the βZr temperature domain, for the hydrogen-enriched (prior-) βZr phase. The αZr phase is substantially strengthened and embrittled by oxygen. Power-law and nearly linear creep regimes are observed and were modelled for stress levels beyond and below 15 MPa, respectively. The model αZr(O) material experiences a ductile-to-brittle transition at 1000-1100°C for oxygen contents between 3.4 and 4.3 wt.%. The viscoplastic behavior of the αZr(O) phase was used to evaluate the contribution of the αZr(O) layer to the HT creep behavior of an oxidized fuel cladding tube subjected to internal pressure. The model (prior-) βZr phase becomes macroscopically brittle at temperatures ≤135°C and ≤350-400°C for average hydrogen contents