People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petersmann, Sandra
Carinthia University of Applied Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Multi-Material Implant Structures with Medical-Grade Polyurethane via Additive Manufacturingcitations
- 2023Statistical-based optimization of fused filament fabrication parameters for short-carbon-fiber-reinforced poly-ether-ether-ketone considering multiple loading conditionscitations
- 2023Effects of simulated body fluid on the mechanical properties of polycarbonate polyurethane produced via material jettingcitations
- 2023Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylenecitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Ermüdungsverhalten von 3D-gedrucktem endlosfaserverstärktem Polylactid
- 2022Multimaterial Extrusion-Based Additive Manufacturing of Compliant Crack Arrestercitations
- 2022Effect of die temperature on the fatigue behaviour of PLA produced by means of fused filament fabrication
- 2022The Effects of Washing and Formaldehyde Sterilization on the Mechanical Performance of Poly(methyl Methacrylate) (PMMA) Parts Produced by Material Extrusion-Based Additive Manufacturing or Material Jettingcitations
- 2021Morphology and Weld Strength of a Semi-Crystalline Polymer Produced via Material Extrusion-Based Additive Manufacturing
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Processcitations
- 2018Material Development and Modelling of a Thermal Insulation Film in Battery Systems
Places of action
Organizations | Location | People |
---|
article
Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structures
Abstract
The aim of this study is to show the influence of using compliant interlayers as crack arresters for three-dimensional (3-D)-printed polymeric structures. To investigate the effectiveness of compliant interlayers, specimens consisting of a stiff and brittle matrix and thin compliant interlayers were printed. The results of these polymeric composites were compared to pure matrix material samples. To generate specimens, a commercially available material extrusion-based desktop 3-Dprinter was used. Additively manufactured samples were tested in both impact as well as fracture mechanical tests. The application of a compliant interlayer as crack arrester showed high potential in both types of test. Instrumented Charpy impact tests according to EN ISO 179-2 revealed an increase of notched impact strength from 5.0 ± 0.1 kJm−2 to 25 kJm−2 (energy up to Fmax) and 136 ± 2.6 kJm−2 (total energy during testing), respectively. This indicates an increase of roughly 725% and 2,720%, while the maximum force during testing remained almost unchanged at approximately 200 N. Interestingly, the exact position as well as the number of compliant interlayers did not show a significant influence on the results. Therefore, tests that are more detailed were conducted on specimens including only a single interlayer. Further tests consisted of J-integral testing on specimens with aforementioned single compliant interlayers. Crack resistance (J-R curves) were generated using the multi-specimen approach and evaluation according to the protocol of the European Structural Integrity Society. Although a special data-shifting procedure has to be applied to interpret results more clearly, J-integral values showed a significant increase of 250 % at the interface between materials compared to the pure matrix material.