People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wiener, Johannes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Investigation of background noise affecting AE data acquisition during tensile loading of FRPs
- 2023Determination of creep crack growth kinetics of ABS via the C* approach at different temperaturescitations
- 2023Concepts towards bio-inspired multilayered polymer-compositescitations
- 2023Comparing crack density and dissipated energy as measures for off-axis damage in composite laminatescitations
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2022Influence of layer architecture on fracture toughness and specimen stiffness in polymer multilayer compositescitations
- 2021Optimization of Mechanical Properties and Damage Tolerance in Polymer-Mineral Multilayer Compositescitations
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2020Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomerscitations
- 2019Application of the material inhomogeneity effect for the improvement of fracture toughness of a brittle polymercitations
- 2019Erhöhung der Bruchzähigkeit durch Multischichtaufbau
- 2019Bioinspired toughness improvement through soft interlayers in mineral reinforced polypropylenecitations
Places of action
Organizations | Location | People |
---|
article
Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structures
Abstract
The aim of this study is to show the influence of using compliant interlayers as crack arresters for three-dimensional (3-D)-printed polymeric structures. To investigate the effectiveness of compliant interlayers, specimens consisting of a stiff and brittle matrix and thin compliant interlayers were printed. The results of these polymeric composites were compared to pure matrix material samples. To generate specimens, a commercially available material extrusion-based desktop 3-Dprinter was used. Additively manufactured samples were tested in both impact as well as fracture mechanical tests. The application of a compliant interlayer as crack arrester showed high potential in both types of test. Instrumented Charpy impact tests according to EN ISO 179-2 revealed an increase of notched impact strength from 5.0 ± 0.1 kJm−2 to 25 kJm−2 (energy up to Fmax) and 136 ± 2.6 kJm−2 (total energy during testing), respectively. This indicates an increase of roughly 725% and 2,720%, while the maximum force during testing remained almost unchanged at approximately 200 N. Interestingly, the exact position as well as the number of compliant interlayers did not show a significant influence on the results. Therefore, tests that are more detailed were conducted on specimens including only a single interlayer. Further tests consisted of J-integral testing on specimens with aforementioned single compliant interlayers. Crack resistance (J-R curves) were generated using the multi-specimen approach and evaluation according to the protocol of the European Structural Integrity Society. Although a special data-shifting procedure has to be applied to interpret results more clearly, J-integral values showed a significant increase of 250 % at the interface between materials compared to the pure matrix material.