People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dharmendra, C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2019Forging of Mg–3Sn–2Ca–0.4Al Alloy Assisted by Its Processing Map and Validation Through Analytical Modeling
- 2019Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5 vol. % Nano-Alumina Composite
- 2018Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloycitations
- 2018Hot forging behavior of Mg−8Al−4Ba−4Ca (ABaX844) alloy and validation of processing mapcitations
- 2018Role of loading direction on compressive deformation behavior of extruded ZK60 alloy plate in a wide range of temperaturecitations
- 2018Review on Hot Working Behavior and Strength of Calcium-Containing Magnesium Alloyscitations
- 2017Optimization of Thermo-Mechanical Processing for Forging of Newly Developed Creep-Resistant Magnesium Alloy ABaX633citations
- 2017High Temperature Strength and Hot Working Technology for As-Cast Mg–1Zn–1Ca (ZX11) Alloycitations
- 2015Comparative Study of Microstructure and Texture of Cast and Homogenized TX32 Magnesium Alloy After Hot Deformationcitations
- 2015Processing Map of AZ31-1Ca-1.5 vol.% Nano-Alumina Composite for Hot Workingcitations
- 2015Comparative study of microstructure and texture of cast and homogenized TX32 magnesium alloy after hot deformationcitations
- 2014Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4Al magnesium alloycitations
- 2014Effect of aluminum on microstructural evolution during hot deformation of TX32 magnesium alloycitations
- 2013Hot workability analysis with processing map and texture characteristics of as-cast TX32 magnesium alloycitations
- 2013High temperature deformation of magnesium alloy TX32-0.4Al-0.8Si
- 2013High temperature deformation of magnesium alloy TX32-0.4Al-0.8Si
- 2013High Temperature Deformation and Microstructural Features of TXA321 Magnesium Alloy: Correlations with Processing Mapcitations
- 2012Deformation Microstructures and Textures of Cast Mg-3Sn-2Ca alloy under Uniaxial Hot Compression
- 2012Hot working mechanisms and texture development in Mg-3Sn-2Ca-0.4Al alloycitations
- 2012Effect of deformation conditions on microstructure and texture during compression of Mg-3Sn-2Ca-0.4Al-0.4Si alloy
- 2012Texture evolution during hot deformation processing of Mg-3Sn-2Ca-0.4Al alloy
- 2012Texture evolution during hot deformation processing of Mg-3Sn-2Ca-0.4Al alloycitations
- 2012Study of Microstructure and Texture of Hot-Deformed TXA321 Magnesium alloy
- 2011Compressive strength and hot deformation behavior of TX32 magnesium alloy with 0.4% Al and 0.4% Si additionscitations
- 2011COMPRESSIVE STRENGTH AND HOT DEFORMATION BEHAVIOR OF TX32 MAGNESIUM ALLOY WITH 0.4% Al AND 0.4% Si ADDITIONScitations
- 2011Study on laser welding-brazing of zinc coated steel to aluminum alloy with a zinc based fillercitations
Places of action
Organizations | Location | People |
---|
article
Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5 vol. % Nano-Alumina Composite
Abstract
The development of texture in AZ31-1Ca-1.5 volume percent (vol. %) nano-Alumina composite subjected to uniaxial compression is studied over large ranges of temperature and strain rate, and correlated with operative slip systems in the various domains of its processing map. The initial rod, synthesized via disintegrated melt deposition and subsequently extruded, has a fine grain size (2-3 μm) and basal texture with (0001) planes parallel to the extrusion direction. The processing map exhibits four domains: Domain 1: 250-350°C and 0.0003-0.01 s<sup>-1</sup>, Domain 1A: 350-410°C and 0.0003-0.01 s<sup>-1</sup>, Domain 2: 410-490°C and 0.002-0.2 s<sup>-1</sup>, and Domain 3: 325- 410°C and 0.6-10 s<sup>-1</sup>. Microstructures in these four domains revealed dynamic recrystallization, although the mechanisms of slip and recovery are different. In Domain 1, basal slip is the dominating mechanism that produced strong basal textures. Recovery occurs via dislocation climb controlled by lattice self-diffusion, which is promoted by the fine grain size in the starting material. In Domain 1A, prismatic slip is the major deformation mechanism and the basal texture is reduced, and the prismatic planes are tilted towards the compression axis. At higher temperatures of Domain 2, in addition to basal and prismatic slip, pyramidal slip occurs, and cross-slip among the multiple intersecting slip planes is the recovery mechanism that destroys the initial basal texture. At higher strain rates, at which Domain 3 occurs, non-basal slip (prismatic and pyramidal) activity is higher than that for basal slip, and the basal texture is reduced, giving way to favorable prismatic slip orientations. The recovery in this domain occurs via dislocation climb, which is controlled by grain boundary self-diffusion. The activation parameters, tensile ductility, and fracture features further support the conclusions on the rate-controlling mechanisms occurring in each domain.