People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Santa-Aho, Suvi Tuulikki
Tampere University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Magnetic domain wall dynamics studied by in-situ lorentz microscopy with aid of custom-made Hall-effect sensor holdercitations
- 2024Synergistic effects of heat treatments and severe shot peening on residual stresses and microstructure in 316L stainless steel produced by laser powder bed fusioncitations
- 2024Magnetic behavior of steel studied by in-situ Lorentz microscopy, magnetic force microscopy and micromagnetic simulations
- 2023Magnetic Domain Structure of Ferromagnetic Steels Studied by Lorentz Microscopy and Magnetic Force Microscopy
- 2023Multi-instrumental approach to domain walls and their movement in ferromagnetic steels – Origin of Barkhausen noise studied by microscopy techniquescitations
- 2022Novel utilization of microscopy and modelling to better understand Barkhausen noise signal
- 2022Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stressescitations
- 2022Surface and subsurface modification of selective laser melting built 316L stainless steel by means of severe shot peening
- 2021Additive manufactured 316l stainless-steel samplescitations
- 2021Mimicking Barkhausen noise measurement by in-situ transmission electron microscopy - effect of microstructural steel features on Barkhausen noisecitations
- 2021Motion of Domain Walls in Ferromagnetic Steel Studied by TEM – Effect of Microstructural Features
- 2020Statistical evaluation of the Barkhausen Noise Testing (BNT) for ground samples
- 2020Cracking and Failure Characteristics of Flame Cut Thick Steel Platescitations
- 2019Role of Steel Plate Thickness on the Residual Stress Formation and Cracking Behavior During Flame Cuttingcitations
- 2019Case Depth Prediction of Nitrided Samples with Barkhausen Noise Measurementcitations
- 2018Surface layer characterization of shot peened gear specimenscitations
- 2018Effect of microstructural characteristics of thick steel plates on residual stress formation and cracking during flame cuttingcitations
- 2017Characterization of Flame Cut Heavy Steelcitations
- 2016Barkhausen noise response of three different welded duplex stainless steelscitations
- 2016The Characterization of Flame Cut Heavy Steel – The Residual Profiling of Heat Affected Surface Layercitations
- 2015Modelling of Material Properties Using Frequency Domain Information from Barkhausen Noise Signalcitations
- 2012Barkhausen Noise Method for Hardened Steel Surface Characterization - The Effect of Heat Treatments, Thermal Damages and Stresses
Places of action
Organizations | Location | People |
---|
article
Surface layer characterization of shot peened gear specimens
Abstract
The production of gear components includes numerous manufacturing<br/>operations, which are carried out to ensure proper surface characteristics.<br/>Shot peening is one of the surface finishing processes used for transmission<br/>components like gears to improve their fatigue behavior. Shot peening increases<br/>the compressive residual stresses on the surface, and the procedure also reduces<br/>the amount of retained austenite in the surface layer. In addition, shot peening<br/>has an influence on other mechanical properties, such as surface roughness and<br/>surface hardness. An experimental design was conducted with varying shot<br/>peening process parameters, like coverage density and intensity, to alter the<br/>surface layer of 13 transmission gear specimens. The correlation between shot<br/>peening parameters, Barkhausen noise (BN) features, and X-ray diffraction<br/>residual stress measurement was studied. Linear correlation was found between<br/>residual stress and shot peening parameters. The relationship between residual<br/>stress and BN root-mean-square was not evident but was revealed by taking the<br/>ratio of BN measurements at different frequencies. Additionally, BN features, such as peak position, coercivity, and integral area, were found to have a linear trend with the intensity. Along with the aforementioned measurements, other material characterization measurements were also taken. The shot peening coverage density was observed to have a linear relationship with surface roughness values, while an intensity of over 0.6 mm A was noticed to affect the surface hardness. The results obtained can be used in the determination of suitable shot peening parameters to achieve a surface with desired residual stress and other surface properties.