People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jokiaho, Tuomas
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Nitrogen alloyed austenitic Ni-free stainless steel for additive manufacturingcitations
- 2023Nitrogen Alloyed Austenitic Ni-free Stainless Steel For Additive Manufacturingcitations
- 2022Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stressescitations
- 2022Surface and subsurface modification of selective laser melting built 316L stainless steel by means of severe shot peening
- 2021Additive manufactured 316l stainless-steel samples : Microstructure, residual stress and corrosion characteristics after post-processingcitations
- 2021Additive manufactured 316l stainless-steel samplescitations
- 2020Cracking and Failure Characteristics of Flame Cut Thick Steel Platescitations
- 2019Role of Steel Plate Thickness on the Residual Stress Formation and Cracking Behavior During Flame Cuttingcitations
- 2019Residual Stress, Microstructure and Cracking Characteristics of Flame Cut Thick Steel Plates : Towards Optimized Flame Cutting Practices
- 2018Surface layer characterization of shot peened gear specimenscitations
- 2018Effect of microstructural characteristics of thick steel plates on residual stress formation and cracking during flame cuttingcitations
- 2017Characterization of Flame Cut Heavy Steelcitations
- 2016The Characterization of Flame Cut Heavy Steel – The Residual Profiling of Heat Affected Surface Layercitations
Places of action
Organizations | Location | People |
---|
article
Effect of microstructural characteristics of thick steel plates on residual stress formation and cracking during flame cutting
Abstract
Thick wear-resistant steel plates are commonly used in demanding conditions,<br/>such as in the mining industry. In harsh environments, a high degree of both<br/>toughness and hardness is required, which extends the service life of the<br/>components but also makes the production of the plates difficult. Flame cutting is a generally applied cutting method in the heavy steel industry since it enables the cutting of thick steel plates at high production rates. However, flame cutting may cause cracks in the cut edge of the steel plates, leading to rejects for the steel industry and end-users. In addition, cutting generates a heat-affected zone at the cut edge, where volumetric and microstructural changes and hardness variations take place. A steep thermal gradient, generated during flame cutting, also produces high residual stresses on the cut edge. The goal of this study is to examine how microstructural features contribute to the residual stress formation and cracking probability of thick steel plates. Specific microstructural features can make the plates prone to cracking and tend to produce undesired stresses during the cutting process. The residual stress profiles of flame-cut specimens were measured using the X-ray diffraction method. In addition, the mechanical properties of steel plates<br/>were evaluated. The microstructures of the cut edge and the base material were<br/>characterized by electron microscopy. Results indicate that the shape of the prior austenite grains has an effect on both the cracking probability and residual stressformation. Longitudinally oriented prior austenite grain boundaries combined with a high residual tensile stress state provide potential sites for cracking.