People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuutti, Juha
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Constraint effects on fracture toughness of ductile cast iron in the ductile regimecitations
- 2022Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weld
- 2022Sensitivity of the Master Curve reference temperature T0 to the crack front curvaturecitations
- 2022Miniature C(T) Specimens-Pinhole Eccentricity and the Effect of Crack Opening Displacement Measurement Locationcitations
- 2021Evaluation of an Alloy 52 / Cladded Carbon Steel Repair Weld by Cold Metal Transfer
- 2021Online nonlinear ultrasound imaging of crack closure during thermal fatigue loadingcitations
- 2020Numerical assessment of the effects of microcrack interaction in AM componentscitations
- 2020A52M/SA502 Dissimilar Metal RPV Repair Weld:Evaluation of different techniques
- 2020A52M/SA502 Dissimilar Metal RPV Repair Weld
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld:Experimental Evaluation and Post-Weld Characterizationscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld : Experimental Evaluation and Post-Weld Characterizationscitations
- 2018Comparison of ASME XI and BS7910 Allowable Surface Flaw Size Evaluation Procedures in Piping Componentscitations
- 2017Use of CTOD as crack driving force parameter for low-cycle thermal fatigue
- 2013Disposal canister shock absorber tests and analysis
- 2012A local remeshing procedure to simulate crack propagation in quasi-brittle materialscitations
- 2011Fracture Assessment of Reactor Circuit (FRAS):Advanced numerical fracture assessment methods
- 2010Simulation of ice crushing experiment using FE-model update technique
Places of action
Organizations | Location | People |
---|
article
Miniature C(T) Specimens-Pinhole Eccentricity and the Effect of Crack Opening Displacement Measurement Location
Abstract
This paper focuses on the quality criteria for miniature compact tension (C(T)) specimens. The continuously diminishing volume of reference materials for fracture toughness surveillance testing encourages research on the usability of miniature-sized test specimens, and consequently, it is of great interest in the nuclear power plant field. Sufficient quality criteria and applicability are investigated experimentally and numerically by varying the pinhole locations to investigate the importance of the eccentricity of pinholes and its effect on measurement results. Additionally, the effect of measuring the crack opening displacement (CMOD) from the load line versus the front face and the effect of side grooving are studied with experimental arrangements. The results show that neither the eccentricity of pinholes within the studied offset values nor the location of the CMOD gauge imposes limits on the applicability of miniature C(T) specimens. With eccentric pinholes or any CMOD gauge placement, the fracture toughness results are valid.