People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hasholt, Marianne Tange
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Towards Extending the Range of Supplementary Cementitious Materials in ASR Regulations
- 2024Laboratory and field investigations of alkali-silica reaction prevention by supplementary cementitious materials:Influence of the free alkali loadingcitations
- 2023Pore solution alkalinity of cement paste as determined by Cold Water Extractioncitations
- 2023Pore solution alkalinity of cement paste as determined by Cold Water Extractioncitations
- 2023Relationship between Chloride Migration, Bulk Electrical Conductivity and Formation Factor of Blended Cement Pastescitations
- 2023Cold Water Extraction for determination of the free alkali metal content in blended cement pastescitations
- 2023Cold Water Extraction for determination of the free alkali metal content in blended cement pastescitations
- 2022Predicting the effect of SCMs on ASR in the accelerated mortar bar test with artificial neural networks
- 2022Predicting the effect of SCMs on ASR in the accelerated mortar bar test with artificial neural networks
- 2022Nordic Concrete Research workshop: “Accelerated freeze-thaw testing of concrete”, Lyngby, 20<sup>th</sup> April 2022citations
- 2020Air void analysis of hardened concrete without colour enhancementcitations
- 2016Frost damage of concrete subject to confinement
- 2015Superabsorbent Polymers as a Means of Improving Frost Resistance of Concretecitations
- 2005The effect of form pressure on the air void structure of SCC
Places of action
Organizations | Location | People |
---|
article
Superabsorbent Polymers as a Means of Improving Frost Resistance of Concrete
Abstract
Superabsorbent polymer (SAP) was introduced in cementitious materials about 15 years ago. Since then, several studies on the frost resistance of concrete with SAP have been published. However, an up-to-date review across the different studies is missing. This paper presented a literature review on how SAP influences concrete frost resistance. Moreover, it also presented a larger experimental study on the topic. The conclusions that were drawn from the experimental study were in line with the extract of the pool of results from the literature, first of all that SAP addition can improve frost resistance of concrete. The improvement was attributed to voids created by SAP. As was clearly demonstrated in the paper, it was crucial to document the void structure of the hardened concrete. Other factors than SAP could lead to void formation. For example, residue of surfactant on SAP particles, originating from the production of suspension polymerized SAP, can have an air entraining effect in concrete. Therefore, assuming that SAP generated voids are the only voids may lead to erroneous conclusions. When SAP is used, it is, in principle, possible to produce concrete with a pre-defined void structure as regards total void volume and void size. However, the optimum SAP void structure in relation to frost resistance is not known, and as long as the target is not clear, it is hard to use the design option of controlled void structure in a constructive way.