People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Ole Mejlhede
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2020Air void analysis of hardened concrete without colour enhancementcitations
- 2020Variation in phase quantification of white portland cement by XRD
- 2016Proceedings of the International RILEM Conference Materials, Systems and Structures in Civil Engineering 2016
- 2016Can superabsorbent polymers mitigate shrinkage in cementitious materials blended with supplementary cementitious materials?
- 2016Can superabsorbent polymers mitigate shrinkage in cementitious materials blended with supplementary cementitious materials?
- 2015The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materialscitations
- 2015The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materialscitations
- 2015Superabsorbent Polymers as a Means of Improving Frost Resistance of Concretecitations
- 2013Thermal analysis of cement pastes with superabsorbent polymers
- 2013Use of Superabsorbent Polymers in Concrete
- 2012The Pozzolanic reaction of silica fumecitations
- 2009Synthesis of pure Portland cement phasescitations
- 2007Standard Test Method for Autogenous Strain of Cement Paste and Mortar
- 2005Micro-crack detection in high-performance cementitious materials
- 2004Mitigation strategies for autogenous shrinkage cracking
- 2003Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms
- 2003A thermal comparator sensor for measuring autogenous deformation in hardening Portland cement paste
Places of action
Organizations | Location | People |
---|
article
Superabsorbent Polymers as a Means of Improving Frost Resistance of Concrete
Abstract
Superabsorbent polymer (SAP) was introduced in cementitious materials about 15 years ago. Since then, several studies on the frost resistance of concrete with SAP have been published. However, an up-to-date review across the different studies is missing. This paper presented a literature review on how SAP influences concrete frost resistance. Moreover, it also presented a larger experimental study on the topic. The conclusions that were drawn from the experimental study were in line with the extract of the pool of results from the literature, first of all that SAP addition can improve frost resistance of concrete. The improvement was attributed to voids created by SAP. As was clearly demonstrated in the paper, it was crucial to document the void structure of the hardened concrete. Other factors than SAP could lead to void formation. For example, residue of surfactant on SAP particles, originating from the production of suspension polymerized SAP, can have an air entraining effect in concrete. Therefore, assuming that SAP generated voids are the only voids may lead to erroneous conclusions. When SAP is used, it is, in principle, possible to produce concrete with a pre-defined void structure as regards total void volume and void size. However, the optimum SAP void structure in relation to frost resistance is not known, and as long as the target is not clear, it is hard to use the design option of controlled void structure in a constructive way.