People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tarnowski, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Shaping the structure and properties of titanium and Ti6Al7Nb titanium alloy in low-temperature plasma nitriding processescitations
- 2021Formation of Nitrogen Doped Titanium Dioxide Surface Layer on NiTi Shape Memory Alloycitations
- 2021Plasma modification of carbon coating produced by RF CVD on oxidized NiTi shape memory alloy under glow-discharge conditionscitations
- 2021The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steelcitations
- 2020Influence of nitrided and nitrocarburised layers on the functional properties of nitrogen-doped soft carbon-based coatings deposited on 316L steel under DC glow-discharge conditionscitations
- 2020Effect of nitriding conditions of Ti6Al7Nb on microstructure of TiN surface layercitations
- 2020TEM investigations of active screen plasma nitrided Ti6Al4V and Ti6Al7Nb alloyscitations
- 2020Effect of Nitrided and Nitrocarburised Austenite on Pitting and Crevice Corrosion Resistance of 316 LVM Steel Implantscitations
- 2019TEM studies of low temperature cathode-plasma nitrided Ti6Al7Nb alloycitations
- 2018Structure and hemocompatibility of nanocrystalline titanium nitride produced under glow-discharge conditionscitations
- 2018Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopycitations
- 2018Modification of titanium and its alloys implants by low temperature surface plasma treatments for cardiovascular applicationscitations
- 2018Structure and properties of composite surface layers produced on NiTi shape memory alloy by a hybrid methodcitations
- 2017Properties of Ti-6Al-7Nb titanium alloynitrocarburized under glow discharge conditions
- 2017Odporność korozyjna warstw azotonawęglanych wytworzonych na stopie tytanu Ti6Al7Nbcitations
- 2017Corrosion resistance of NiTi shape memory alloy after hybrid surface treatment using low-temperature plasmacitations
- 2017Influence of amorphous carbon layers on tribological properties of polyetheretherketone composite in contactwith nitrided layer produced on Ti6Al4V titanium alloycitations
- 2016Cathodic Cage Plasma Nitriding of Ti6Al4V Alloycitations
- 2016Wpływ topografii powierzchni na odporność korozyjną stopu z pamięcią kształtu NiTi po procesie azotowania jarzeniowego w niskotemperaturowej plazmie / Influence of surface topography on the corrosion resistance of NiTi shape memory alloy nitrided at low-temperature plasma process
- 2015The importance of surface topography for the biological properties of nitrided diffusion layers Produced on Ti6Al4V titanium alloycitations
Places of action
Organizations | Location | People |
---|
article
Modification of titanium and its alloys implants by low temperature surface plasma treatments for cardiovascular applications
Abstract
Impairment of the cardiovascular system is a major cause of mortality in humans. Cardiac implants are made mostly of titanium and its alloys and various methods have been used to improve their surface properties. Titanium nitride - TiN and titanium oxide - TiO2 surface layers are promising materials to improvebiocompatibility in this respect. Modifying their surface properties in the nanoscale may impact their protein adsorption and cellular response to the implant.Nitriding and oxynitriding processes in low-temperature plasma, also involving the use of an active screen, seem to be prospective methods in the production of titanium nitride and oxide forming an diffusive outer zone of titanium nitride - TiN (nanocrystalline)+Ti2N+αTi(N) or oxynitrided - TiO2(nanocrystalline)+TiN+Ti2N+αTi(N) surface layers on titanium alloy. Also a hybrid method that combines oxidizing and the RFCVD process for producing a-C:N:H (amorphous carbon modified with nitrogen and hydrogen ) +TiO2 ( nanocrystalline titanium oxide-rutile)– type composite surface layers on NiTi shape memory alloys is noteworthy in the context of medical applications.The paper presents the characteristics of these diffusion multi-phase layers in terms of their microstructure, topography, hardness, residual stress, corrosion and wear resistance, wettability as well as biological properties such as: adsorption of proteins - fibrinogen and albumin, and platelet adhesion during interaction with blood components (human plasma and platelet-rich plasma). The results suggest that these layers,produced using the new hybrid processes, exhibit a high potential for improving cardiac implant properties. The article is based on research carried out by the authors and the interpretation of the obtained results is made on the basis of literature data regarding the surface layers of titanium oxides and titanium nitride produced by various methods.