Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zych, Adam

  • Google
  • 2
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Structure and properties of composite layers of nitrided layers with surface zone of manganese phosphate type produced on 32CDV13 steelcitations
  • 2017Structure and adhesion of nickel-phosphorus coatings plated on the nitrided 1.2343 (WCL) steelcitations

Places of action

Chart of shared publication
Wierzchoń, Tadeusz
2 / 56 shared
Rudnicki, Jacek
1 / 6 shared
Trojanowski, Janusz
1 / 1 shared
Kulikowski, Krzysztof
2 / 18 shared
Kucharska, Beata
1 / 8 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Wierzchoń, Tadeusz
  • Rudnicki, Jacek
  • Trojanowski, Janusz
  • Kulikowski, Krzysztof
  • Kucharska, Beata
OrganizationsLocationPeople

article

Structure and properties of composite layers of nitrided layers with surface zone of manganese phosphate type produced on 32CDV13 steel

  • Wierzchoń, Tadeusz
  • Rudnicki, Jacek
  • Zych, Adam
  • Trojanowski, Janusz
  • Kulikowski, Krzysztof
Abstract

Due to its high mechanical properties the 32CDV13 steel is widely used in the industry for the production of highly loaded parts of machines and equipment. The increase in the durability and the reliability of elements is currently being achieved by using conventional methods of surface treatments: carburizing processes, burnishing and surface hardening. Hybrid processes constitute an alternative to these solutions, leading to obtaining of composite layers. They combine two or more techniques during surface treatments, enabling the formation of surface layers with unique and complementary properties. This paper presents the structure (light microscopy, SEM) and the results of friction wear resistance (“ball on disc” method) of composite layers produced on heat treated 32CDV13 steel after it was (hardness 36 HRC) subjected to the hybrid process which combined the glow discharge nitriding process and phosphating method. The results show improvement of tribological properties, especially reduction of friction coefficient in comparison to nitrided layer.

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • wear resistance
  • steel
  • composite
  • hardness
  • Manganese