Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sivakumar, Rengasamy

  • Google
  • 1
  • 9
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Impact of magnetic spinel ferrite content on the structure, morphology, optical, and magneto-dielectric properties of BaTiO<sub>3</sub> materials8citations

Places of action

Chart of shared publication
Shirsath, Sagar E.
1 / 2 shared
Slimani, Yassine
1 / 9 shared
Batoo, Khalid M.
1 / 1 shared
Baykal, Abdulhadi
1 / 4 shared
Özçelik, Bekir
1 / 4 shared
Ercan, Ismail
1 / 2 shared
Thakur, Atul
1 / 11 shared
Almessiere, Munirah A.
1 / 4 shared
Hannachi, Essia
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Shirsath, Sagar E.
  • Slimani, Yassine
  • Batoo, Khalid M.
  • Baykal, Abdulhadi
  • Özçelik, Bekir
  • Ercan, Ismail
  • Thakur, Atul
  • Almessiere, Munirah A.
  • Hannachi, Essia
OrganizationsLocationPeople

article

Impact of magnetic spinel ferrite content on the structure, morphology, optical, and magneto-dielectric properties of BaTiO<sub>3</sub> materials

  • Sivakumar, Rengasamy
  • Shirsath, Sagar E.
  • Slimani, Yassine
  • Batoo, Khalid M.
  • Baykal, Abdulhadi
  • Özçelik, Bekir
  • Ercan, Ismail
  • Thakur, Atul
  • Almessiere, Munirah A.
  • Hannachi, Essia
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study, the influence of magnetic content of NiFe<jats:sub>1.93</jats:sub>Dy<jats:sub>0.07</jats:sub>O<jats:sub>4</jats:sub> spinel ferrite on the structural, morphological, optical, and magneto-dielectric properties of BaTiO<jats:sub>3</jats:sub> materials was investigated. NiFe<jats:sub>1.93</jats:sub>Dy<jats:sub>0.07</jats:sub>O<jats:sub>4</jats:sub> magnetic nanoparticles and BaTiO<jats:sub>3</jats:sub> dielectric materials were firstly synthesized using the hydrothermal method and sol–gel auto-combustion route, respectively. Then, different contents of the magnetic nanoparticles were added to BaTiO<jats:sub>3</jats:sub> to form a series of BaTiO<jats:sub>3</jats:sub>/(NiFe<jats:sub>1.93</jats:sub>Dy<jats:sub>0.07</jats:sub>O<jats:sub>4</jats:sub>)<jats:sub><jats:italic>x</jats:italic></jats:sub> samples (abbreviated as BTO/(NDFO)<jats:sub><jats:italic>x</jats:italic></jats:sub>) with <jats:italic>x</jats:italic> = 0, 2, 5, 10, 20, and 100 %. The analysis of the structure via X-ray diffraction (XRD) technique revealed a transformation from a tetragonal structure for the pristine BTO sample to a cubic structure upon the inclusion of magnetic nanoparticles. The morphological observations and chemical composition analyses via scanning electron microscope (SEM) coupled with EDX system showed the successful formulation of biphasic products. The optical properties were investigated, and it was found that the inclusion of the magnetic phase diminishes the bandgap energy (<jats:italic>E</jats:italic><jats:sub><jats:italic>g</jats:italic></jats:sub>) of final BTO/(NDFO)<jats:sub><jats:italic>x</jats:italic></jats:sub> samples. Furthermore, vibrating sample magnetometer (VSM) was used to investigate the magnetization properties. The values of saturation magnetization (<jats:italic>M</jats:italic><jats:sub><jats:italic>S</jats:italic></jats:sub>) and remanent (<jats:italic>M</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub>) magnetization are rising with the increase of magnetic phase content. However, the coercivity (<jats:italic>H</jats:italic><jats:sub><jats:italic>c</jats:italic></jats:sub>) does not show a regular variation with the increase of NDFO content. The dielectric properties were also investigated for different BaTiO<jats:sub>3</jats:sub>/(NiFe<jats:sub>1.93</jats:sub>Dy<jats:sub>0.07</jats:sub>O<jats:sub>4</jats:sub>)<jats:sub><jats:italic>x</jats:italic></jats:sub> samples. The obtained results showed that the real permittivity (<jats:italic>ε</jats:italic>′) and dielectric tangent loss (tan <jats:italic>δ</jats:italic>) increased with increasing temperature. Remarkably, the addition of magnetic content provokes a reduction in tan <jats:italic>δ</jats:italic> values compared to the pristine BTO sample. The lowest values of tan <jats:italic>δ</jats:italic> and highest frequency stability were noticed in the sample added with 10 % of magnetic phase. The impedance and modulus were also determined and discussed.</jats:p>

Topics
  • nanoparticle
  • inclusion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • chemical composition
  • combustion
  • Energy-dispersive X-ray spectroscopy
  • magnetization
  • saturation magnetization
  • coercivity