People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hamid, Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Spectroscopic characterization of biosynthesized lead oxide (PbO) nanoparticles and their applications in PVC/graphite-PbO nanocompositescitations
- 2022The Influence of Matrix Density on The Weibull Modulus of Natural Fiber Reinforced Nanocompositescitations
- 2022Preparation and comparative evaluation of PVC/PbO and PVC/PbO/graphite based conductive nanocompositescitations
- 2022Tensile Strength and Morphological Behavior of Treated Oil Pam Empty Fruit Bunch Particle Reinforced Polymeric Compositecitations
Places of action
Organizations | Location | People |
---|
article
Spectroscopic characterization of biosynthesized lead oxide (PbO) nanoparticles and their applications in PVC/graphite-PbO nanocomposites
Abstract
<jats:title>Abstract</jats:title><jats:p>Extract of <jats:italic>Hibiscus rosa-sinensis</jats:italic> plant<jats:italic>s</jats:italic> was used for the green synthesis of PbO nanoparticles. The prepared nanoparticles were conformed with the help of SEM, X-ray diffraction, FTIR and UV-visible spectroscopy. The prepared PbO nanoparticles were dispersed in deionized water and mixed with graphite to get graphite-PbO (G-PbO) filler. Seven different nanocomposite membranes with variable compositions (5, 10, 15, 20, 25, 30 and 35%) of PVC/G-PbO were prepared in tetrahydrofuran (THF) solvent using solution casting method. Different physiochemical parameters of the nanocomposite membranes studied included morphology, porosity, density, water uptake, swelling degree, electrical conductivity and proton adsorption capacity. All these physiochemical parameters were compared with pure PVC membranes available in literature. It was found that the addition of G-PbO filler in PVC polymer improved all the physiochemical properties except density. PVC/G-PbO membranes showed 42.65 times more electrical conductivity and 5.90 times more ion adsorption capacities compare to pure PVC membranes.</jats:p>