People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engel, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024On the Ytterbium Valence and the Physical Properties in Selected Intermetallic Phases
- 2024Nominal CaAl2Pt2 and Ca2Al3Pt – two new Intermetallic Compounds in the Ternary System Ca−Al−Pt
- 2024Synthesis, magnetic and NMR spectroscopic properties of the MAl5Pt3 series (M = Ca, Y, La–Nd, Sm–Er)†citations
- 2023Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structurecitations
- 2023Raman and NMR spectroscopic and theoretical investigations of the cubic laves-phases REAl2 (RE = Sc, Y, La, Yb, Lu)citations
- 2023On the RE2TiAl3 (RE = Y, Gd–Tm, Lu) Series : The First Aluminum Representatives of the Rhombohedral Mg2Ni3Si Type Structure
- 2023MAl4Ir2 (M = Ca, Sr, Eu): superstructures of the KAu4In2 typecitations
- 2023Trivalent europium – a scarce case in intermetallicscitations
- 2022SrAl5Pt3 and Sr2Al16Pt9 – two new strontium aluminum platinidescitations
- 2022MAl4Ir2 (M = Ca, Sr, Eu) : superstructures of the KAu4In2 type
Places of action
Organizations | Location | People |
---|
article
Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
Abstract
<jats:title>Abstract</jats:title><jats:p>Investigations in the ternary system Eu–Al–Pt led to the discovery of Eu<jats:sub>4</jats:sub>Al<jats:sub>13</jats:sub>Pt<jats:sub>9</jats:sub>, a new representative exhibiting a coloring variant of the Ho<jats:sub>4</jats:sub>Ir<jats:sub>13</jats:sub>Ge<jats:sub>9</jats:sub> type structure. The orthorhombic structure was refined based on single crystal X-ray diffraction data (<jats:italic>Pmmn</jats:italic>, Wyckoff sequence <jats:italic>e</jats:italic><jats:sup>9</jats:sup><jats:italic>b</jats:italic><jats:sup>3</jats:sup><jats:italic>a</jats:italic><jats:sup>5</jats:sup>, <jats:italic>a</jats:italic> = 415.38(1), <jats:italic>b</jats:italic> = 1149.73(2), <jats:italic>c</jats:italic> = 1994.73(5) pm, <jats:italic>wR</jats:italic>2 = 0.0622, 1901 <jats:italic>F</jats:italic><jats:sup>2</jats:sup> values, 88 variables) and full atomic ordering was observed for all atoms. The structure features a complex [Al<jats:sub>13</jats:sub>Pt<jats:sub>9</jats:sub>]<jats:sup><jats:italic>δ</jats:italic>–</jats:sup> network with the Eu atoms occupying hexagonal prismatic cavities. The bonding situation of this new platinide was investigated via quantum-chemical calculations. According to Density Functional Theory (DFT) the title compound has to be described as a polar intermetallic material with a covalently bonded [Al<jats:sub>13</jats:sub>Pt<jats:sub>9</jats:sub>]<jats:sup><jats:italic>δ</jats:italic>–</jats:sup> polyanion showing strong Pt–Al alongside weak Al–Al and Pt–Pt bonding and Eu cations in the cavities.</jats:p>